BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 18540621)

  • 1. Fate and impact on microorganisms of rice allelochemicals in paddy soil.
    Kong CH; Wang P; Gu Y; Xu XH; Wang ML
    J Agric Food Chem; 2008 Jul; 56(13):5043-9. PubMed ID: 18540621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity and allelopathy of soil of flavone o-glycosides from rice.
    Kong CH; Zhao H; Xu XH; Wang P; Gu Y
    J Agric Food Chem; 2007 Jul; 55(15):6007-12. PubMed ID: 17602647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release and activity of allelochemicals from allelopathic rice seedlings.
    Kong C; Liang W; Xu X; Hu F; Wang P; Jiang Y
    J Agric Food Chem; 2004 May; 52(10):2861-5. PubMed ID: 15137826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproduction allocation and potential mechanism of individual allelopathic rice plants in the presence of competing barnyardgrass.
    Kong CH; Wang ML; Wang P; Ni HW; Meng XR
    Pest Manag Sci; 2013 Jan; 69(1):142-8. PubMed ID: 22888051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204.
    Kim MC; Ahn JH; Shin HC; Kim T; Ryu TH; Kim DH; Song HG; Lee GH; Ka JO
    J Microbiol Biotechnol; 2008 Feb; 18(2):207-18. PubMed ID: 18309263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of allelopathic rice varieties combined with cultural management options on paddy field weeds.
    Kong CH; Hu F; Wang P; Wu JL
    Pest Manag Sci; 2008 Mar; 64(3):276-82. PubMed ID: 18172879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Migration of (14)C in the paddy soil-to-rice plant system after (14)C-acetic acid breakdown by microorganisms below the plow layer.
    Ogiyama S; Takeda H; Ishii N; Uchida S
    J Environ Radioact; 2010 Feb; 101(2):177-84. PubMed ID: 19896253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allelopathy in crop/weed interactions--an update.
    Belz RG
    Pest Manag Sci; 2007 Apr; 63(4):308-26. PubMed ID: 17195966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.
    Zeng LS; Liao M; Chen CL; Huang CY
    Ecotoxicol Environ Saf; 2007 May; 67(1):67-74. PubMed ID: 16806470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Microbial Consortia in Paddy Rice Soil by Phospholipid Analysis.
    Bai Q; Gattinger A; Zelles L
    Microb Ecol; 2000 May; 39(4):273-281. PubMed ID: 10882432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of possible horizontal gene transfer from transgenic rice to soil microorganisms in paddy rice field.
    Kim SE; Moon JS; Kim JK; Choi WS; Lee SH; Kim SU
    J Microbiol Biotechnol; 2010 Jan; 20(1):187-92. PubMed ID: 20134251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens.
    Kong C; Xu X; Zhou B; Hu F; Zhang C; Zhang M
    Phytochemistry; 2004 Apr; 65(8):1123-8. PubMed ID: 15110693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities.
    Wu WX; Liu W; Lu HH; Chen YX; Medha D; Janice T
    FEMS Microbiol Ecol; 2009 Jan; 67(1):93-102. PubMed ID: 19049503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of allelopathic potential and quantification of momilactone A,B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds.
    Chung IM; Kim JT; Kim SH
    J Agric Food Chem; 2006 Apr; 54(7):2527-36. PubMed ID: 16569039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence and persistence of phorate and carbofuran insecticides on microorganisms in rice field.
    Das AC; Chakravarty A; Sukul P; Mukherjee D
    Chemosphere; 2003 Dec; 53(8):1033-7. PubMed ID: 14505726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA) levels in the wheat rhizosphere and their effect on the soil microbial community structure.
    Chen KJ; Zheng YQ; Kong CH; Zhang SZ; Li J; Liu XG
    J Agric Food Chem; 2010 Dec; 58(24):12710-6. PubMed ID: 21087039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil.
    Lu Y; Murase J; Watanabe A; Sugimoto A; Kimura M
    FEMS Microbiol Ecol; 2004 May; 48(2):179-86. PubMed ID: 19712401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes of microbial biomass carbon and enzyme activities in rice-barnyard grass coexisted soils].
    Li HB; Kong CH
    Ying Yong Sheng Tai Xue Bao; 2008 Oct; 19(10):2234-8. PubMed ID: 19123361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal variations in sugar contents and microbial community in a ryegrass soil.
    Medeiros PM; Fernandes MF; Dick RP; Simoneit BR
    Chemosphere; 2006 Oct; 65(5):832-9. PubMed ID: 16697029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil.
    Su YH; Yang XY
    Sci Total Environ; 2009 Jan; 407(3):1027-34. PubMed ID: 19000632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.