These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1329 related articles for article (PubMed ID: 18540675)
1. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization. Dai S; Li Z Biomacromolecules; 2008 Jul; 9(7):1883-93. PubMed ID: 18540675 [TBL] [Abstract][Full Text] [Related]
2. Enzymatic Synthesis of a Bio-Based Copolyester from Poly(butylene succinate) and Poly((R)-3-hydroxybutyrate): Study of Reaction Parameters on the Transesterification Rate. Debuissy T; Pollet E; Avérous L Biomacromolecules; 2016 Dec; 17(12):4054-4063. PubMed ID: 27936726 [TBL] [Abstract][Full Text] [Related]
3. Enzyme-catalyzed polycondensation of polyester macrodiols with divinyl adipate: a green method for the preparation of thermoplastic block copolyesters. Dai S; Xue L; Zinn M; Li Z Biomacromolecules; 2009 Dec; 10(12):3176-81. PubMed ID: 19919068 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers. Fernández J; Etxeberria A; Sarasua JR J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288 [TBL] [Abstract][Full Text] [Related]
5. Lipase-mediated direct in situ ring-opening polymerization of ε-caprolactone formed by a chemo-enzymatic method. Zhang Y; Lu P; Sun Q; Li T; Zhao L; Gao X; Wang F; Liu J J Biotechnol; 2018 Sep; 281():74-80. PubMed ID: 29908204 [TBL] [Abstract][Full Text] [Related]
6. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA. Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877 [TBL] [Abstract][Full Text] [Related]
7. Acid catalyzed transesterification as a route to poly(3-hydroxybutyrate-co-epsilon-caprolactone) copolymers from their homopolymers. Impallomeni G; Giuffrida M; Barbuzzi T; Musumarra G; Ballistreri A Biomacromolecules; 2002; 3(4):835-40. PubMed ID: 12099830 [TBL] [Abstract][Full Text] [Related]
8. Toward one-pot lipase-catalyzed synthesis of poly(ε-caprolactone) particles in aqueous dispersion. Inprakhon P; Panlawan P; Pongtharankul T; Marie E; Wiemann LO; Durand A; Sieber V Colloids Surf B Biointerfaces; 2014 Jan; 113():254-60. PubMed ID: 24103504 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of poly(epsilon-caprolactone)-b-poly(gamma-benzyl-L-glutamic acid) block copolymer using amino organic calcium catalyst. Rong G; Deng M; Deng C; Tang Z; Piao L; Chen X; Jing X Biomacromolecules; 2003; 4(6):1800-4. PubMed ID: 14606911 [TBL] [Abstract][Full Text] [Related]
10. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of poly(ε-caprolactone) by an immobilized lipase coated with ionic liquids in a solvent-free condition. Wu C; Zhang Z; Chen C; He F; Zhuo R Biotechnol Lett; 2013 Oct; 35(10):1623-30. PubMed ID: 23708876 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Aliphatic Polyesters Synthesized via Enzymatic Ring-Opening Polymerization in Ionic Liquids. Piotrowska U; Sobczak M; Oledzka E Molecules; 2017 Jun; 22(6):. PubMed ID: 28574463 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of biodegradable amphiphilic Y-shaped block co-polymers via ring-opening polymerization for drug delivery. Jia L; Yan L; Li Y J Biomater Sci Polym Ed; 2011; 22(9):1197-213. PubMed ID: 20615355 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic synthesis of poly(ε-caprolactone) in monocationic and dicationic ionic liquids. Wu C; Zhang Z; He F; Zhuo R Biotechnol Lett; 2013 Jun; 35(6):879-85. PubMed ID: 23479410 [TBL] [Abstract][Full Text] [Related]
15. Biodegradable shape-memory block co-polymers for fast self-expandable stents. Xue L; Dai S; Li Z Biomaterials; 2010 Nov; 31(32):8132-40. PubMed ID: 20723973 [TBL] [Abstract][Full Text] [Related]
16. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) copolymers by sequential ring-opening polymerization. Yuan W; Yuan J; Zhang F; Xie X Biomacromolecules; 2007 Apr; 8(4):1101-8. PubMed ID: 17326679 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the thermo- and pH-responsive assembly of triblock copolymers based on poly(ethylene glycol) and functionalized poly(ε-caprolactone). Safaei Nikouei N; Lavasanifar A Acta Biomater; 2011 Oct; 7(10):3708-18. PubMed ID: 21672641 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of biodegradable polymers using biocatalysis with Yarrowia lipolytica lipase. Barrera-Rivera KA; Flores-Carreón A; Martínez-Richa A Methods Mol Biol; 2012; 861():485-93. PubMed ID: 22426736 [TBL] [Abstract][Full Text] [Related]
19. New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers. Barouti G; Liow SS; Dou Q; Ye H; Orione C; Guillaume SM; Loh XJ Chemistry; 2016 Jul; 22(30):10501-12. PubMed ID: 27345491 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone). Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]