These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 18540993)
1. Plasmalogen deficiency in cerebral adrenoleukodystrophy and its modulation by lovastatin. Khan M; Singh J; Singh I J Neurochem; 2008 Aug; 106(4):1766-79. PubMed ID: 18540993 [TBL] [Abstract][Full Text] [Related]
2. In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chrondrodysplasia punctata and Pelizaeus-Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor. Wood PL; Khan MA; Smith T; Ehrmantraut G; Jin W; Cui W; Braverman NE; Goodenowe DB Lipids Health Dis; 2011 Oct; 10():182. PubMed ID: 22008564 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of pharmacological induction of fatty acid beta-oxidation in X-linked adrenoleukodystrophy. McGuinness MC; Zhang HP; Smith KD Mol Genet Metab; 2001; 74(1-2):256-63. PubMed ID: 11592822 [TBL] [Abstract][Full Text] [Related]
4. Lovastatin therapy for X-linked adrenoleukodystrophy: clinical and biochemical observations on 12 patients. Pai GS; Khan M; Barbosa E; Key LL; Craver JR; Curé JK; Betros R; Singh I Mol Genet Metab; 2000 Apr; 69(4):312-22. PubMed ID: 10870849 [TBL] [Abstract][Full Text] [Related]
5. Very long-chain fatty acid accumulation causes lipotoxic response via 5-lipoxygenase in cerebral adrenoleukodystrophy. Khan M; Singh J; Gilg AG; Uto T; Singh I J Lipid Res; 2010 Jul; 51(7):1685-95. PubMed ID: 20173212 [TBL] [Abstract][Full Text] [Related]
7. MicroRNA Profiling Identifies miR-196a as Differentially Expressed in Childhood Adrenoleukodystrophy and Adult Adrenomyeloneuropathy. Shah N; Singh I Mol Neurobiol; 2017 Mar; 54(2):1392-1403. PubMed ID: 26843114 [TBL] [Abstract][Full Text] [Related]
8. Silencing of Abcd1 and Abcd2 genes sensitizes astrocytes for inflammation: implication for X-adrenoleukodystrophy. Singh J; Khan M; Singh I J Lipid Res; 2009 Jan; 50(1):135-47. PubMed ID: 18723473 [TBL] [Abstract][Full Text] [Related]
9. Cytokine-induced accumulation of very long-chain fatty acids in rat C6 glial cells: implication for X-adrenoleukodystrophy. Khan M; Pahan K; Singh AK; Singh I J Neurochem; 1998 Jul; 71(1):78-87. PubMed ID: 9648853 [TBL] [Abstract][Full Text] [Related]
10. Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. Munn NJ; Arnio E; Liu D; Zoeller RA; Liscum L J Lipid Res; 2003 Jan; 44(1):182-92. PubMed ID: 12518037 [TBL] [Abstract][Full Text] [Related]
11. Lovastatin and sodium phenylacetate normalize the levels of very long chain fatty acids in skin fibroblasts of X- adrenoleukodystrophy. Singh I; Pahan K; Khan M FEBS Lett; 1998 Apr; 426(3):342-6. PubMed ID: 9600263 [TBL] [Abstract][Full Text] [Related]
12. Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Kobayashi T; Shinnoh N; Kondo A; Yamada T Biochem Biophys Res Commun; 1997 Mar; 232(3):631-6. PubMed ID: 9126326 [TBL] [Abstract][Full Text] [Related]
13. Metformin-induced mitochondrial function and ABCD2 up-regulation in X-linked adrenoleukodystrophy involves AMP-activated protein kinase. Singh J; Olle B; Suhail H; Felicella MM; Giri S J Neurochem; 2016 Jul; 138(1):86-100. PubMed ID: 26849413 [TBL] [Abstract][Full Text] [Related]
14. Lovastatin does not correct the accumulation of very long-chain fatty acids in tissues of adrenoleukodystrophy protein-deficient mice. Yamada T; Shinnoh N; Taniwaki T; Ohyagi Y; Asahara H; Horiuchi ; Kira J J Inherit Metab Dis; 2000 Sep; 23(6):607-14. PubMed ID: 11032335 [TBL] [Abstract][Full Text] [Related]
15. Adrenoleukodystrophy-related protein can compensate functionally for adrenoleukodystrophy protein deficiency (X-ALD): implications for therapy. Netik A; Forss-Petter S; Holzinger A; Molzer B; Unterrainer G; Berger J Hum Mol Genet; 1999 May; 8(5):907-13. PubMed ID: 10196381 [TBL] [Abstract][Full Text] [Related]
16. Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions. Kruska N; Schönfeld P; Pujol A; Reiser G Biochim Biophys Acta; 2015 May; 1852(5):925-36. PubMed ID: 25583114 [TBL] [Abstract][Full Text] [Related]
18. Evidence of oxidative stress in very long chain fatty acid--treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins. Baarine M; Andréoletti P; Athias A; Nury T; Zarrouk A; Ragot K; Vejux A; Riedinger JM; Kattan Z; Bessede G; Trompier D; Savary S; Cherkaoui-Malki M; Lizard G Neuroscience; 2012 Jun; 213():1-18. PubMed ID: 22521832 [TBL] [Abstract][Full Text] [Related]
19. Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. Jang J; Kang HC; Kim HS; Kim JY; Huh YJ; Kim DS; Yoo JE; Lee JA; Lim B; Lee J; Yoon TM; Park IH; Hwang DY; Daley GQ; Kim DW Ann Neurol; 2011 Sep; 70(3):402-9. PubMed ID: 21721033 [TBL] [Abstract][Full Text] [Related]
20. ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy. Baarine M; Beeson C; Singh A; Singh I J Neurochem; 2015 May; 133(3):380-96. PubMed ID: 25393703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]