BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18541163)

  • 1. Skim milk powder supplementation affects lactose utilization, microbial survival and biotransformation of isoflavone glycosides to isoflavone aglycones in soymilk by Lactobacillus.
    Pham TT; Shah NP
    Food Microbiol; 2008 Aug; 25(5):653-61. PubMed ID: 18541163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of lactulose on biotransformation of isoflavone glycosides to aglycones in soymilk by lactobacilli.
    Pham TT; Shah NP
    J Food Sci; 2008 Apr; 73(3):M158-65. PubMed ID: 18387120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of isoflavone glycosides by Bifidobacterium animalis in soymilk supplemented with skim milk powder.
    Pham TT; Shah NP
    J Food Sci; 2007 Oct; 72(8):M316-24. PubMed ID: 17995612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the biotransformation of isoflavones in soymilk supplemented with lactose using probiotic bacteria during extended fermentation.
    Ding WK; Shah NP
    J Food Sci; 2010 Apr; 75(3):M140-9. PubMed ID: 20492303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of beta-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk.
    Donkor ON; Shah NP
    J Food Sci; 2008 Jan; 73(1):M15-20. PubMed ID: 18211356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast.
    Rekha CR; Vijayalakshmi G
    J Appl Microbiol; 2010 Oct; 109(4):1198-208. PubMed ID: 20477889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of lactulose supplementation on the growth of bifidobacteria and biotransformation of isoflavone glycosides to isoflavone aglycones in soymilk.
    Pham TT; Shah NP
    J Agric Food Chem; 2008 Jun; 56(12):4703-9. PubMed ID: 18500812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of reconstituted skim milk supplemented with soy protein isolate by probiotic organisms.
    Pham TT; Shah NP
    J Food Sci; 2008 Mar; 73(2):M62-6. PubMed ID: 18298737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous beta-glucosidase and beta-galactosidase activities from selected probiotic micro-organisms and their role in isoflavone biotransformation in soymilk.
    Otieno DO; Shah NP
    J Appl Microbiol; 2007 Oct; 103(4):910-7. PubMed ID: 17897193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous beta-glucosidases.
    Otieno DO; Shah NP
    J Appl Microbiol; 2007 Sep; 103(3):601-12. PubMed ID: 17714393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids.
    Tang AL; Shah NP; Wilcox G; Walker KZ; Stojanovska L
    J Food Sci; 2007 Nov; 72(9):M431-6. PubMed ID: 18034738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Glucosidase activity and bioconversion of isoflavones during fermentation of soymilk.
    Hati S; Vij S; Singh BP; Mandal S
    J Sci Food Agric; 2015 Jan; 95(1):216-20. PubMed ID: 24838442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentation characteristics and transit tolerance of probiotic Lactobacillus casei Zhang in soymilk and bovine milk during storage.
    Wang J; Guo Z; Zhang Q; Yan L; Chen W; Liu XM; Zhang HP
    J Dairy Sci; 2009 Jun; 92(6):2468-76. PubMed ID: 19447978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Lactobacillus acidophilus and Lactobacillus casei for a potential probiotic legume-based fermented product using pigeon pea (Cajanus cajan).
    Parra K; Ferrer M; Piñero M; Barboza Y; Medina LM
    J Food Prot; 2013 Feb; 76(2):265-71. PubMed ID: 23433374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using of Lactobacillus and Bifidobacterium to product the isoflavone aglycones in fermented soymilk.
    Wei QK; Chen TR; Chen JT
    Int J Food Microbiol; 2007 Jun; 117(1):120-4. PubMed ID: 17477997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technofunctional quality assessment of soymilk fermented with Lactobacillus acidophilus and Lactobacillus casei.
    Ahsan S; Khaliq A; Chughtai MFJ; Nadeem M; Tahir AB; Din AA; Ntsefong GN; Shariati MA; Rebezov M; Yessimbekov Z; Thiruvengadam M
    Biotechnol Appl Biochem; 2022 Feb; 69(1):172-182. PubMed ID: 33398897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria.
    Chun J; Kim GM; Lee KW; Choi ID; Kwon GH; Park JY; Jeong SJ; Kim JS; Kim JH
    J Food Sci; 2007 Mar; 72(2):M39-44. PubMed ID: 17995840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoflavone phytoestrogen degradation in fermented soymilk with selected beta-glucosidase producing L. acidophilus strains during storage at different temperatures.
    Otieno DO; Ashton JF; Shah NP
    Int J Food Microbiol; 2007 Apr; 115(1):79-88. PubMed ID: 17174431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria.
    Chien HL; Huang HY; Chou CC
    Food Microbiol; 2006 Dec; 23(8):772-8. PubMed ID: 16943081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor.
    Liu CT; Erh MH; Lin SP; Lo KY; Chen KI; Cheng KC
    J Sci Food Agric; 2016 Aug; 96(11):3779-86. PubMed ID: 26676892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.