BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18541337)

  • 1. Virus-induced gene silencing and its application in characterizing genes involved in water-deficit-stress tolerance.
    Senthil-Kumar M; Rame Gowda HV; Hema R; Mysore KS; Udayakumar M
    J Plant Physiol; 2008 Sep; 165(13):1404-21. PubMed ID: 18541337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance.
    Ramegowda V; Senthil-kumar M; Udayakumar M; Mysore KS
    BMC Plant Biol; 2013 Dec; 13():193. PubMed ID: 24289810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants.
    Ramegowda V; Mysore KS; Senthil-Kumar M
    Front Plant Sci; 2014; 5():323. PubMed ID: 25071806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing.
    Senthil-Kumar M; Govind G; Kang L; Mysore KS; Udayakumar M
    Planta; 2007 Feb; 225(3):523-39. PubMed ID: 16924536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications and advantages of virus-induced gene silencing for gene function studies in plants.
    Burch-Smith TM; Anderson JC; Martin GB; Dinesh-Kumar SP
    Plant J; 2004 Sep; 39(5):734-46. PubMed ID: 15315635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VIGS-mediated forward genetics screening for identification of genes involved in nonhost resistance.
    Senthil-Kumar M; Lee HK; Mysore KS
    J Vis Exp; 2013 Aug; (78):e51033. PubMed ID: 23995956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput virus-induced gene-silencing approach to assess the functional relevance of a moisture stress-induced cDNA homologous to lea4.
    Senthil-Kumar M; Udayakumar M
    J Exp Bot; 2006; 57(10):2291-302. PubMed ID: 16798849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Map-Based Functional Analysis of the
    Magwanga RO; Kirungu JN; Lu P; Cai X; Zhou Z; Xu Y; Hou Y; Agong SG; Wang K; Liu F
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31597268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants.
    Purkayastha A; Dasgupta I
    Plant Physiol Biochem; 2009; 47(11-12):967-76. PubMed ID: 19783452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New dimensions for VIGS in plant functional genomics.
    Senthil-Kumar M; Mysore KS
    Trends Plant Sci; 2011 Dec; 16(12):656-65. PubMed ID: 21937256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics.
    Zulfiqar S; Farooq MA; Zhao T; Wang P; Tabusam J; Wang Y; Xuan S; Zhao J; Chen X; Shen S; Gu A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.
    Singh AK; Dwivedi V; Rai A; Pal S; Reddy SG; Rao DK; Shasany AK; Nagegowda DA
    Plant Biotechnol J; 2015 Dec; 13(9):1287-99. PubMed ID: 25809293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VIGS vectors for gene silencing: many targets, many tools.
    Robertson D
    Annu Rev Plant Biol; 2004; 55():495-519. PubMed ID: 15377229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knock-down the expression of TaH2B-7D using virus-induced gene silencing reduces wheat drought tolerance.
    Wang X; Ren Y; Li J; Wang Z; Xin Z; Lin T
    Biol Res; 2019 Mar; 52(1):14. PubMed ID: 30894225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virus-induced gene silencing as a scalable tool to study drought tolerance in plants.
    George GM; Ruckle ME; Lloyd JR
    Methods Mol Biol; 2015; 1287():243-53. PubMed ID: 25740370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton.
    Kirungu JN; Magwanga RO; Lu P; Cai X; Zhou Z; Wang X; Peng R; Wang K; Liu F
    BMC Genet; 2019 Jul; 20(1):62. PubMed ID: 31337336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virus-induced gene silencing for functional analysis of selected genes.
    Godge MR; Purkayastha A; Dasgupta I; Kumar PP
    Plant Cell Rep; 2008 Feb; 27(2):209-19. PubMed ID: 17938933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VIGS technology: an attractive tool for functional genomics studies in legumes.
    Pflieger SP; Richard MMS; Blanchet S; Meziadi C; Geffroy VR
    Funct Plant Biol; 2013 Dec; 40(12):1234-1248. PubMed ID: 32481191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus-Induced Gene Silencing (VIGS) for Functional Characterization of Disease Resistance Genes in Barley Seedlings.
    Gunupuru LR; Perochon A; Ali SS; Scofield SR; Doohan FM
    Methods Mol Biol; 2019; 1900():95-114. PubMed ID: 30460561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.