BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 18541372)

  • 1. Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria.
    Teclu D; Tivchev G; Laing M; Wallis M
    J Hazard Mater; 2009 Jan; 161(2-3):1157-65. PubMed ID: 18541372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria.
    Teclu D; Tivchev G; Laing M; Wallis M
    Water Res; 2008 Dec; 42(19):4885-93. PubMed ID: 18929386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters.
    Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA
    Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic attenuation by oxidized aquifer sediments in Bangladesh.
    Stollenwerk KG; Breit GN; Welch AH; Yount JC; Whitney JW; Foster AL; Uddin MN; Majumder RK; Ahmed N
    Sci Total Environ; 2007 Jul; 379(2-3):133-50. PubMed ID: 17250876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic mobility and groundwater extraction in Bangladesh.
    Harvey CF; Swartz CH; Badruzzaman AB; Keon-Blute N; Yu W; Ali MA; Jay J; Beckie R; Niedan V; Brabander D; Oates PM; Ashfaque KN; Islam S; Hemond HF; Ahmed MF
    Science; 2002 Nov; 298(5598):1602-6. PubMed ID: 12446905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wine wastes as carbon source for biological treatment of acid mine drainage.
    Costa MC; Santos ES; Barros RJ; Pires C; Martins M
    Chemosphere; 2009 May; 75(6):831-6. PubMed ID: 19201010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.
    Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S
    Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial processes as key drivers for metal (im)mobilization along a redox gradient in the saturated zone.
    Vanbroekhoven K; Van Roy S; Gielen C; Maesen M; Ryngaert A; Diels L; Seuntjens P
    Environ Pollut; 2007 Aug; 148(3):759-69. PubMed ID: 17445959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of Eucalyptus tereticornis (Smith) bark and Desulfotomaculum nigrificans for the remediation of acid mine drainage.
    Chockalingam E; Subramanian S
    Bioresour Technol; 2009 Jan; 100(2):615-21. PubMed ID: 18760595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ; Kulnieks VI; Neculita CM
    Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of heavy metal-contaminated soils by sulfate-reducing bacteria.
    Jiang W; Fan W
    Ann N Y Acad Sci; 2008 Oct; 1140():446-54. PubMed ID: 18991946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source.
    Gonçalves MM; da Costa AC; Leite SG; Sant'Anna GL
    Chemosphere; 2007 Nov; 69(11):1815-20. PubMed ID: 17644156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment.
    Katsoyiannis IA; Hug SJ; Ammann A; Zikoudi A; Hatziliontos C
    Sci Total Environ; 2007 Sep; 383(1-3):128-40. PubMed ID: 17570466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains.
    Cabrera G; Pérez R; Gómez JM; Abalos A; Cantero D
    J Hazard Mater; 2006 Jul; 135(1-3):40-6. PubMed ID: 16386832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria.
    Kieu HT; Müller E; Horn H
    Water Res; 2011 Jul; 45(13):3863-70. PubMed ID: 21632086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.