These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 18542275)
1. Near-field observation of spatial phase shifts associated with Goos-Hänschen and Surface Plasmon Resonance effects. Jose J; Segerink FB; Korterik JP; Offerhaus HL Opt Express; 2008 Feb; 16(3):1958-64. PubMed ID: 18542275 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal control of femtosecond plasmon using plasmon response functions measured by near-field scanning optical microscopy (NSOM). Onishi S; Matsuishi K; Oi J; Harada T; Kusaba M; Hirosawa K; Kannari F Opt Express; 2013 Nov; 21(22):26631-41. PubMed ID: 24216884 [TBL] [Abstract][Full Text] [Related]
3. Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance. Lecaruyer P; Maillart E; Canva M; Rolland J Appl Opt; 2006 Nov; 45(33):8419-23. PubMed ID: 17086249 [TBL] [Abstract][Full Text] [Related]
4. The phase-response effect of size-dependent optical enhancement in a single nanoparticle. Huang CH; Lin HY; Lin CH; Chui HC; Lan YC; Chu SW Opt Express; 2008 Jun; 16(13):9580-6. PubMed ID: 18575525 [TBL] [Abstract][Full Text] [Related]
6. Scanning plasmonic microscopy by image reconstruction from the Fourier space. Mollet O; Huant S; Drezet A Opt Express; 2012 Dec; 20(27):28923-8. PubMed ID: 23263132 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging. Mattheyses AL; Axelrod D J Biomed Opt; 2005; 10(5):054007. PubMed ID: 16292967 [TBL] [Abstract][Full Text] [Related]
8. High-resolution angular measurement using surface-plasmon-resonance via phase interrogation at optimal incident wavelengths. Chiang HP; Lin JL; Chang R; Su SY; Leung PT Opt Lett; 2005 Oct; 30(20):2727-9. PubMed ID: 16252755 [TBL] [Abstract][Full Text] [Related]
9. Edge scattering of surface plasmons excited by scanning tunneling microscopy. Zhang Y; Boer-Duchemin E; Wang T; Rogez B; Comtet G; Le Moal E; Dujardin G; Hohenau A; Gruber C; Krenn JR Opt Express; 2013 Jun; 21(12):13938-48. PubMed ID: 23787583 [TBL] [Abstract][Full Text] [Related]
10. Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface. Yang T; Crozier KB Opt Express; 2008 Jun; 16(12):8570-80. PubMed ID: 18545570 [TBL] [Abstract][Full Text] [Related]
11. Demagnifing super resolution imaging based on surface plasmon structures. Wang C; Gan D; Zhao Y; Du C; Luo X Opt Express; 2008 Apr; 16(8):5427-34. PubMed ID: 18542645 [TBL] [Abstract][Full Text] [Related]
13. Effects of plasmon energetics on light emission induced by scanning tunneling microscopy. Miwa K; Sakaue M; Gumhalter B; Kasai H J Phys Condens Matter; 2014 Jun; 26(22):222001. PubMed ID: 24810264 [TBL] [Abstract][Full Text] [Related]
14. Measurement of nanoparticle sizes by conventional optical microscopy with standing evanescent field illumination. Yu X; Araki Y; Iwami K; Umeda N Opt Lett; 2008 Dec; 33(23):2794-6. PubMed ID: 19037429 [TBL] [Abstract][Full Text] [Related]
15. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Lin HY; Huang CH; Chang CH; Lan YC; Chui HC Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835 [TBL] [Abstract][Full Text] [Related]