These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18542279)

  • 1. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells.
    Liao GB; Bareil PB; Sheng Y; Chiou A
    Opt Express; 2008 Feb; 16(3):1996-2004. PubMed ID: 18542279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results.
    Wen JD; Manosas M; Li PT; Smith SB; Bustamante C; Ritort F; Tinoco I
    Biophys J; 2007 May; 92(9):2996-3009. PubMed ID: 17293410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplying optical tweezers force using a micro-lever.
    Lin CL; Lee YH; Lin CT; Liu YJ; Hwang JL; Chung TT; Baldeck PL
    Opt Express; 2011 Oct; 19(21):20604-9. PubMed ID: 21997068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In plane manipulation of a dielectric nanobeam with gradient optical forces.
    Favuzzi PA; Bardoux R; Asano T; Kawakami Y; Noda S
    Opt Express; 2013 Dec; 21(24):29129-39. PubMed ID: 24514464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam.
    Cheng H; Zang W; Zhou W; Tian J
    Opt Express; 2010 Sep; 18(19):20384-94. PubMed ID: 20940930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes.
    Gu M; Kuriakose S; Gan X
    Opt Express; 2007 Feb; 15(3):1369-75. PubMed ID: 19532367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects.
    Kauppila A; Kinnunen M; Karmenyan A; Myllylä R
    Appl Opt; 2012 Aug; 51(23):5705-12. PubMed ID: 22885584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical micromanipulation using supercontinuum Laguerre-Gaussian and Gaussian beams.
    Morris JE; Carruthers AE; Mazilu M; Reece PJ; Cizmar T; Fischer P; Dholakia K
    Opt Express; 2008 Jul; 16(14):10117-29. PubMed ID: 18607419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps.
    Liao GB; Chen YQ; Bareil PB; Sheng Y; Chiou A; Chang MS
    J Biophotonics; 2014 Oct; 7(10):782-7. PubMed ID: 23740841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape anisotropy induces rotations in optically trapped red blood cells.
    Bambardekar K; Dharmadhikari JA; Dharmadhikari AK; Yamada T; Kato T; Kono H; Fujimura Y; Sharma S; Mathur D
    J Biomed Opt; 2010; 15(4):041504. PubMed ID: 20799782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis.
    Mohanty SK; Uppal A; Gupta PK
    Biotechnol Lett; 2004 Jun; 26(12):971-4. PubMed ID: 15269521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.
    Liu Y; Yu M
    Opt Express; 2009 Aug; 17(16):13624-38. PubMed ID: 19654770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic ray tracing for modeling optical cell manipulation.
    Sraj I; Szatmary AC; Marr DW; Eggleton CD
    Opt Express; 2010 Aug; 18(16):16702-14. PubMed ID: 20721060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced optical tweezers for the study of cellular and molecular biomechanics.
    Brouhard GJ; Schek HT; Hunt AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):121-5. PubMed ID: 12617534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical modeling of red blood cells during optical stretching.
    Tan Y; Sun D; Huang W
    J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Beam Acoustic Trapping of Red Blood Cells and Polystyrene Microspheres in Flowing Red Blood Cell Saline and Plasma Suspensions.
    Liu HC; Li Y; Chen R; Jung H; Shung KK
    Ultrasound Med Biol; 2017 Apr; 43(4):852-859. PubMed ID: 28236533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher.
    Ekpenyong AE; Posey CL; Chaput JL; Burkart AK; Marquardt MM; Smith TJ; Nichols MG
    Appl Opt; 2009 Nov; 48(32):6344-54. PubMed ID: 19904335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.