BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 18542303)

  • 1. Variable-load quenching circuit for single-photon avalanche diodes.
    Tisa S; Guerrieri F; Zappa F
    Opt Express; 2008 Feb; 16(3):2232-44. PubMed ID: 18542303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operation of silicon single photon avalanche diodes at cryogenic temperature.
    Rech I; Labanca I; Armellini G; Gulinatti A; Ghioni M; Cova S
    Rev Sci Instrum; 2007 Jun; 78(6):063105. PubMed ID: 17614603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology.
    Mandai S; Fishburn MW; Maruyama Y; Charbon E
    Opt Express; 2012 Mar; 20(6):5849-57. PubMed ID: 22418462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-suppression of reset induced triggering in picosecond SPAD timing circuits.
    Rech I; Resnati D; Gulinatti A; Ghioni M; Cova S
    Rev Sci Instrum; 2007 Aug; 78(8):086112. PubMed ID: 17764372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated array of 2-μm antimonide-based single-photon counting devices.
    Diagne MA; Greszik M; Duerr EK; Zayhowski JJ; Manfra MJ; Bailey RJ; Donnelly JP; Turner GW
    Opt Express; 2011 Feb; 19(5):4210-6. PubMed ID: 21369250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications.
    Cammi C; Panzeri F; Gulinatti A; Rech I; Ghioni M
    Rev Sci Instrum; 2012 Mar; 83(3):033104. PubMed ID: 22462903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes.
    Gallivanoni A; Rech I; Resnati D; Ghioni M; Cova S
    Opt Express; 2006 Jun; 14(12):5021-30. PubMed ID: 19516662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique.
    Dolatpoor Lakeh M; Kammerer JB; Aguénounon E; Issartel D; Schell JB; Rink S; Cathelin A; Calmon F; Uhring W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s.
    Acconcia G; Rech I; Gulinatti A; Ghioni M
    Opt Express; 2016 Aug; 24(16):17819-31. PubMed ID: 27505749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avalanche Transients of Thick 0.35 µm CMOS Single-Photon Avalanche Diodes.
    Goll B; Steindl B; Zimmermann H
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4 ns dead time with a fully integrated active quenching circuit driving a custom single photon avalanche diode.
    Giudici A; Acconcia G; Labanca I; Ghioni M; Rech I
    Rev Sci Instrum; 2022 Apr; 93(4):043103. PubMed ID: 35489934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance trade-offs in single-photon avalanche diode miniaturization.
    Finkelstein H; Hsu MJ; Zlatanovic S; Esener S
    Rev Sci Instrum; 2007 Oct; 78(10):103103. PubMed ID: 17979402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical crosstalk in single photon avalanche diode arrays: a new complete model.
    Rech I; Ingargiola A; Spinelli R; Labanca I; Marangoni S; Ghioni M; Cova S
    Opt Express; 2008 Jun; 16(12):8381-94. PubMed ID: 18545552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing higher order correlations of the photon field with photon number resolving avalanche photodiodes.
    Dynes JF; Yuan ZL; Sharpe AW; Thomas O; Shields AJ
    Opt Express; 2011 Jul; 19(14):13268-76. PubMed ID: 21747481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science.
    Jungmann-Smith JH; Bergamaschi A; Brückner M; Cartier S; Dinapoli R; Greiffenberg D; Jaggi A; Maliakal D; Mayilyan D; Medjoubi K; Mezza D; Mozzanica A; Ramilli M; Ruder Ch; Schädler L; Schmitt B; Shi X; Tinti G
    Rev Sci Instrum; 2015 Dec; 86(12):123110. PubMed ID: 26724009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counting near-infrared single-photons with 95% efficiency.
    Lita AE; Miller AJ; Nam SW
    Opt Express; 2008 Mar; 16(5):3032-40. PubMed ID: 18542389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor.
    Inoue A; Okino T; Koyama S; Hirose Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scintillation induced response in passively-quenched Si-based single photon counting avalanche diode arrays.
    Spanoudaki VCh; Levin CS
    Opt Express; 2011 Jan; 19(2):1665-79. PubMed ID: 21263706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast fully-integrated front-end circuit to overcome pile-up limits in time-correlated single photon counting with single photon avalanche diodes.
    Acconcia G; Cominelli A; Ghioni M; Rech I
    Opt Express; 2018 Jun; 26(12):15398-15410. PubMed ID: 30114802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Channel Gating Chip in 0.18 µm High-Voltage CMOS for Quantum Applications.
    Ribisch C; Hofbauer M; Kohneh Poushi SS; Zimmer A; Schneider-Hornstein K; Goll B; Zimmermann H
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.