These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18542319)

  • 1. High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry.
    Grajciar B; Pircher M; Hitzenberger CK; Findl O; Fercher AF
    Opt Express; 2008 Feb; 16(4):2405-14. PubMed ID: 18542319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo biometry in the mouse eye with low coherence interferometry.
    Schmucker C; Schaeffel F
    Vision Res; 2004; 44(21):2445-56. PubMed ID: 15358080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biometric measurements inside the model eye using a two wavelengths Fourier domain low coherence interferometer.
    Birkner S; Einighammer J; Oltrup T; Bende T; Jean B
    Biomed Tech (Berl); 2011 Feb; 56(1):65-71. PubMed ID: 21235395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations.
    Rajan MS; Keilhorn I; Bell JA
    Eye (Lond); 2002 Sep; 16(5):552-6. PubMed ID: 12194067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye shape using partial coherence interferometry, autorefraction, and SD-OCT.
    Clark CA; Elsner AE; Konynenbelt BJ
    Optom Vis Sci; 2015 Jan; 92(1):115-22. PubMed ID: 25437906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the ultrasonographic method with 2 partial coherence interferometry methods for intraocular lens power calculation.
    Salouti R; Nowroozzadeh MH; Zamani M; Ghoreyshi M; Salouti R
    Optometry; 2011 Mar; 82(3):140-7. PubMed ID: 20933477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of ultrasound and optic biometry with respect to ocular refraction after cataract surgery].
    Skorkovská S; Michálek J; Ruberová M; Synek S
    Cesk Slov Oftalmol; 2004 Jan; 60(1):24-9. PubMed ID: 15011303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-resolved measurement of ocular fundus pulsations by low-coherence tissue interferometry.
    Dragostinoff N; Werkmeister RM; Gröschl M; Schmetterer L
    J Biomed Opt; 2009; 14(5):054047. PubMed ID: 19895148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two optical biometers in intraocular lens power calculation.
    Hui S; Yi L
    Indian J Ophthalmol; 2014 Sep; 62(9):931-4. PubMed ID: 25370395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pupil dilation on biometry measurements with partial coherence interferometry and its effect on IOL power formula calculation.
    Rodriguez-Raton A; Jimenez-Alvarez M; Arteche-Limousin L; Mediavilla-Peña E; Larrucea-Martinez I
    Eur J Ophthalmol; 2015; 25(4):309-14. PubMed ID: 25655597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axial eye-length measurement by wavelength-shift interferometry.
    Sekine A; Minegishi I; Koizumi H
    J Opt Soc Am A; 1993 Jul; 10(7):1651-5. PubMed ID: 8350154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal quality of biometry in silicone oil-filled eyes using partial coherence laser interferometry.
    Dietlein TS; Roessler G; Lüke C; Dinslage S; Roters S; Jacobi PC; Walter P; Krieglstein GK
    J Cataract Refract Surg; 2005 May; 31(5):1006-10. PubMed ID: 15975470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible errors in determining axial length changes during accommodation with the IOLMaster.
    Atchison DA; Smith G
    Optom Vis Sci; 2004 Apr; 81(4):283-6. PubMed ID: 15097771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of laser Doppler interferometric measurements in vivo of axial eye length and thickness of fundus layers in chicks.
    Schmid GF; Papastergiou GI; Nickla DL; Riva CE; Lin T; Stone RA; Laties AM
    Curr Eye Res; 1996 Jun; 15(6):691-6. PubMed ID: 8670774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the axial length of cataract eyes by laser Doppler interferometry.
    Hitzenberger CK; Drexler W; Dolezal C; Skorpik F; Juchem M; Fercher AF; Gnad HD
    Invest Ophthalmol Vis Sci; 1993 May; 34(6):1886-93. PubMed ID: 8491541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multicenter study of optical low-coherence interferometry and partial-coherence interferometry optical biometers with patients from the United States and China.
    Hoffer KJ; Shammas HJ; Savini G; Huang J
    J Cataract Refract Surg; 2016 Jan; 42(1):62-7. PubMed ID: 26948779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole eye segment imaging and measurement with dual-channel spectral-domain OCT.
    Fan S; Sun Y; Yang X; Dai C; Ren Q; Zheng H; Zhou C
    Ophthalmic Surg Lasers Imaging Retina; 2015 Feb; 46(2):186-94. PubMed ID: 25707043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry.
    Huang J; Chen H; Li Y; Chen Z; Gao R; Yu J; Zhao Y; Lu W; McAlinden C; Wang Q
    J Refract Surg; 2019 Feb; 35(2):115-120. PubMed ID: 30742226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability and validity of the partial coherence interferometry for measurement of ocular axial length in children.
    Hussin HM; Spry PG; Majid MA; Gouws P
    Eye (Lond); 2006 Sep; 20(9):1021-4. PubMed ID: 16096655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence on intraocular lens power calculation of corneal radii measurement using an image-guided system.
    Thomas BC; Mueller A; Auffarth GU; Holzer MP
    J Cataract Refract Surg; 2016 Nov; 42(11):1588-1594. PubMed ID: 27956285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.