These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18542340)

  • 21. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared.
    Venuthurumilli PK; Ye PD; Xu X
    ACS Nano; 2018 May; 12(5):4861-4867. PubMed ID: 29684270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parallel optical nanolithography using nanoscale bowtie aperture array.
    Uppuluri SM; Kinzel EC; Li Y; Xu X
    Opt Express; 2010 Mar; 18(7):7369-75. PubMed ID: 20389758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-field transmission matrix microscopy for mapping high-order eigenmodes of subwavelength nanostructures.
    Seo E; Jin YH; Choi W; Jo Y; Lee S; Song KD; Ahn J; Park QH; Kim MK; Choi W
    Nat Commun; 2020 May; 11(1):2575. PubMed ID: 32444615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 16 nm-resolution lithography using ultra-small-gap bowtie apertures.
    Chen Y; Qin J; Chen J; Zhang L; Ma C; Chu J; Xu X; Wang L
    Nanotechnology; 2017 Feb; 28(5):055302. PubMed ID: 28008884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-high resolution resonant C-shaped aperture nano-tip.
    Cheng YT; Takashima Y; Yuen Y; Hansen PC; Leen JB; Hesselink L
    Opt Express; 2011 Mar; 19(6):5077-85. PubMed ID: 21445142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contact optical nanolithography using nanoscale C-shaped apertures.
    Wang L; Jin EX; Uppuluri SM; Xu X
    Opt Express; 2006 Oct; 14(21):9902-8. PubMed ID: 19529383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybridized plasmonic modes and Fabry-Perot effect in nanoscale bowtie aperture waveguide.
    Zhang L; Qin J; Guo S; Wang L
    Opt Express; 2019 Jun; 27(12):17221-17227. PubMed ID: 31252935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical and experimental research on the near-field optical virtual probe.
    Hong T; Wang J; Sun L; Li D
    Scanning; 2004; 26(5 Suppl 1):I57-62. PubMed ID: 15540815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of near-field scanning optical microscopy using a plasmonic gap probe.
    Tanaka K; Tanaka M; Katayama K
    Opt Express; 2006 Oct; 14(22):10603-13. PubMed ID: 19529463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
    Grefe SE; Leiva D; Mastel S; Dhuey SD; Cabrini S; Schuck PJ; Abate Y
    Phys Chem Chem Phys; 2013 Nov; 15(43):18944-50. PubMed ID: 24097054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Standardization of excitation efficiency in near-field scanning optical microscopy.
    Mitsui T; Imanaka Y; Takehana K; Takamasu T; Nakajima K; Kim J
    Anal Sci; 2011; 27(2):139-42. PubMed ID: 21321434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of high-throughput, polarization-maintaining, near-field probes.
    Adiga VP; Kolb PW; Evans GT; Cubillos-Moraga MA; Schmadel DC; Dyott R; Drew HD
    Appl Opt; 2006 Apr; 45(12):2597-600. PubMed ID: 16633407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture.
    Lee T; Lee E; Oh S; Hahn JW
    Nanotechnology; 2013 Apr; 24(14):145502. PubMed ID: 23511230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of functional nanoprobes for optical near-field characterization.
    Jia Y; Li H; Zhang B; Wei X; Zhang Z; Liu Z; Xu Y
    J Phys Condens Matter; 2010 Aug; 22(33):334218. PubMed ID: 21386508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform.
    Luo Y; Chamanzar M; Apuzzo A; Salas-Montiel R; Nguyen KN; Blaize S; Adibi A
    Nano Lett; 2015 Feb; 15(2):849-56. PubMed ID: 25562706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resolving near-field from high order signals of scattering near-field scanning optical microscopy.
    Zhou N; Li Y; Xu X
    Opt Express; 2014 Jul; 22(15):18715-23. PubMed ID: 25089489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano-slit probes for near-field optical microscopy fabricated by focused ion beams.
    Danzebrink HU; Dziomba T; Sulzbach T; Ohlsson O; Lehrer C; Frey L
    J Microsc; 1999; 194(Pt 2-3):335-9. PubMed ID: 11388262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inducing superconductivity at a nanoscale: photodoping with a near-field scanning optical microscope.
    Decca RS; Drew HD; Maiorov B; Guimpel J; Osquiguil EJ
    J Microsc; 1999; 194(Pt 2-3):407-11. PubMed ID: 11388276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A platform for time-resolved scanning Kerr microscopy in the near-field.
    Keatley PS; Loughran THJ; Hendry E; Barnes WL; Hicken RJ; Childress JR; Katine JA
    Rev Sci Instrum; 2017 Dec; 88(12):123708. PubMed ID: 29289235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bowtie nano-aperture as interface between near-fields and a single-mode fiber.
    Mivelle M; Ibrahim IA; Baida F; Burr GW; Nedeljkovic D; Charraut D; Rauch JY; Salut R; Grosjean T
    Opt Express; 2010 Jul; 18(15):15964-74. PubMed ID: 20720980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.