These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18542446)

  • 1. Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV.
    Mutlugun E; Soganci IM; Demir HV
    Opt Express; 2008 Mar; 16(6):3537-45. PubMed ID: 18542446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of low sensitizing efficiency of quantum dots in organic solar cells.
    ten Cate S; Schins JM; Siebbeles LD
    ACS Nano; 2012 Oct; 6(10):8983-8. PubMed ID: 22950740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
    Tian J; Zhang Q; Zhang L; Gao R; Shen L; Zhang S; Qu X; Cao G
    Nanoscale; 2013 Feb; 5(3):936-43. PubMed ID: 23166058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite.
    Chen J; Xu F; Wu J; Qasim K; Zhou Y; Lei W; Sun LT; Zhang Y
    Nanoscale; 2012 Jan; 4(2):441-3. PubMed ID: 22159842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells.
    Zhu G; Pan L; Xu T; Zhao Q; Lu B; Sun Z
    Nanoscale; 2011 May; 3(5):2188-93. PubMed ID: 21451826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible to near-infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics.
    Nimmo MT; Caillard LM; De Benedetti W; Nguyen HM; Seitz O; Gartstein YN; Chabal YJ; Malko AV
    ACS Nano; 2013 Apr; 7(4):3236-45. PubMed ID: 23556540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG; Kramer IJ; Barkhouse AR; Wang X; Konstantatos G; Debnath R; Levina L; Raabe I; Nazeeruddin MK; Grätzel M; Sargent EH
    ACS Nano; 2010 Jun; 4(6):3374-80. PubMed ID: 20496882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High efficiency graphene solar cells by chemical doping.
    Miao X; Tongay S; Petterson MK; Berke K; Rinzler AG; Appleton BR; Hebard AF
    Nano Lett; 2012 Jun; 12(6):2745-50. PubMed ID: 22554195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells.
    Tsukigase H; Suzuki Y; Berger MH; Sagawa T; Yoshikawa S
    J Nanosci Nanotechnol; 2011 Mar; 11(3):1914-22. PubMed ID: 21449328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.
    Jiang L; You T; Deng WQ
    Nanotechnology; 2013 Oct; 24(41):415401. PubMed ID: 24045808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode.
    Sun XW; Chen J; Song JL; Zhao DW; Deng WQ; Lei W
    Opt Express; 2010 Jan; 18(2):1296-301. PubMed ID: 20173955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.
    Baek SW; Shim JH; Seung HM; Lee GS; Hong JP; Lee KS; Park JG
    Nanoscale; 2014 Nov; 6(21):12524-31. PubMed ID: 25177831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters.
    Yang MD; Liu YK; Shen JL; Wu CH; Lin CA; Chang WH; Wang HH; Yeh HI; Chan WH; Parak WJ
    Opt Express; 2008 Sep; 16(20):15754-8. PubMed ID: 18825214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion.
    Beard MC; Johnson JC; Luther JM; Nozik AJ
    Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sun-believable solar paint. A transformative one-step approach for designing nanocrystalline solar cells.
    Genovese MP; Lightcap IV; Kamat PV
    ACS Nano; 2012 Jan; 6(1):865-72. PubMed ID: 22147684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A solar photovoltaic system with ideal efficiency close to the theoretical limit.
    Zhao Y; Sheng MY; Zhou WX; Shen Y; Hu ET; Chen JB; Xu M; Zheng YX; Lee YP; Lynch DW; Chen LY
    Opt Express; 2012 Jan; 20(1):A28-38. PubMed ID: 22379676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced open-circuit voltage of PbS nanocrystal quantum dot solar cells.
    Yoon W; Boercker JE; Lumb MP; Placencia D; Foos EE; Tischler JG
    Sci Rep; 2013; 3():2225. PubMed ID: 23868514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability.
    Yang Y; Zhu L; Sun H; Huang X; Luo Y; Li D; Meng Q
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6162-8. PubMed ID: 23075399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV.
    Mutlugun E; Soganci IM; Demir HV
    Opt Express; 2007 Feb; 15(3):1128-34. PubMed ID: 19532340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced performance of InGaN/GaN based solar cells with an In(0.05)Ga(0.95)N ultra-thin inserting layer between GaN barrier and In(0.2)Ga(0.8)N well.
    Ren Z; Chao L; Chen X; Zhao B; Wang X; Tong J; Zhang J; Zhuo X; Li D; Yi H; Li S
    Opt Express; 2013 Mar; 21(6):7118-24. PubMed ID: 23546093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.