These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 18542510)

  • 1. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators.
    Savchenkov AA; Rubiola E; Matsko AB; Ilchenko VS; Maleki L
    Opt Express; 2008 Mar; 16(6):4130-44. PubMed ID: 18542510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation.
    Volyanskiy K; Salzenstein P; Tavernier H; Pogurmirskiy M; Chembo YK; Larger L
    Opt Express; 2010 Oct; 18(21):22358-63. PubMed ID: 20941136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave photonics systems based on whispering-gallery-mode resonators.
    Coillet A; Henriet R; Phan Huy K; Jacquot M; Furfaro L; Balakireva I; Larger L; Chembo YK
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 23963358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators.
    Saleh K; Henriet R; Diallo S; Lin G; Martinenghi R; Balakireva IV; Salzenstein P; Coillet A; Chembo YK
    Opt Express; 2014 Dec; 22(26):32158-73. PubMed ID: 25607180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced transposed flicker noise in microwave oscillators using gaas-based feedforward amplifiers.
    Everard JK; Broomfield CD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1108-17. PubMed ID: 17571810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators.
    Merrer PH; Saleh K; Llopis O; Berneschi S; Cosi F; Conti GN
    Appl Opt; 2012 Jul; 51(20):4742-8. PubMed ID: 22781250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator.
    Xiao S; Hollberg L; Newbury NR; Diddams SA
    Opt Express; 2008 Jun; 16(12):8498-508. PubMed ID: 18545564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandwidth enhancement of electro-optic field sensing using photonic down-mixing with harmonic sidebands.
    Lee DJ; Whitaker JF
    Opt Express; 2008 Sep; 16(19):14771-9. PubMed ID: 18795014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of gain and bandwidth on the multimode behavior of optoelectronic microwave oscillators.
    Kouomou Chembo Y; Larger L; Bendoula R; Colet P
    Opt Express; 2008 Jun; 16(12):9067-72. PubMed ID: 18545618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter.
    Jiang F; Wong JH; Lam HQ; Zhou J; Aditya S; Lim PH; Lee KE; Shum PP; Zhang X
    Opt Express; 2013 Jul; 21(14):16381-9. PubMed ID: 23938489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs.
    Saleh K; Chembo YK
    Opt Express; 2016 Oct; 24(22):25043-25056. PubMed ID: 27828444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and testing of microfluidic optomechanical oscillators.
    Han K; Kim KH; Kim J; Lee W; Liu J; Fan X; Carmon T; Bahl G
    J Vis Exp; 2014 May; (87):. PubMed ID: 24962013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplifier-free slab-coupled optical waveguide optoelectronic oscillator systems.
    Loh W; Yegnanarayanan S; Klamkin J; Duff SM; Plant JJ; O'Donnell FJ; Juodawlkis PW
    Opt Express; 2012 Aug; 20(17):19589-98. PubMed ID: 23038600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop.
    Ware C; Oxenløwe LK; Gómez Agis F; Mulvad HC; Galili M; Kurimura S; Nakajima H; Ichikawa J; Erasme D; Clausen AT; Jeppesen P
    Opt Express; 2008 Mar; 16(7):5007-12. PubMed ID: 18542601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator.
    Tallur S; Sridaran S; Bhave SA
    Opt Express; 2011 Nov; 19(24):24522-9. PubMed ID: 22109479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser system generating 250-mJ bunches of 5-GHz repetition rate, 12-ps pulses.
    Agnesi A; Braggio C; Carrà L; Pirzio F; Lodo S; Messineo G; Scarpa D; Tomaselli A; Reali G; Vacchi C
    Opt Express; 2008 Sep; 16(20):15811-5. PubMed ID: 18825218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology.
    Cruz FC
    Opt Express; 2008 Aug; 16(17):13267-75. PubMed ID: 18711563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Q printed helical resonators for oscillators and filters.
    Everard JK; Broomfield CD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1741-50. PubMed ID: 17941381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-low phase noise microwave generation with a free-running monolithic femtosecond laser.
    Kalubovilage M; Endo M; Schibli TR
    Opt Express; 2020 Aug; 28(17):25400-25409. PubMed ID: 32907062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.