These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18542583)

  • 1. Single quantum dot controlled lasing effects in high-Q micropillar cavities.
    Reitzenstein S; Böckler C; Bazhenov A; Gorbunov A; Löffler A; Kamp M; Kulakovskii VD; Forchel A
    Opt Express; 2008 Mar; 16(7):4848-57. PubMed ID: 18542583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lasing properties of non-resonant single quantum dot-cavity system under incoherent excitation.
    Guan H; Yao P; Yu W; Wang P; Ming H
    Opt Express; 2012 Dec; 20(27):28437-46. PubMed ID: 23263079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers.
    Li F; Mi Z
    Opt Express; 2009 Oct; 17(22):19933-9. PubMed ID: 19997217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems.
    Kistner C; Heindel T; Schneider C; Rahimi-Iman A; Reitzenstein S; Höfling S; Forchel A
    Opt Express; 2008 Sep; 16(19):15006-12. PubMed ID: 18795037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1.3 microm quantum dot laser in coupled-cavity-injection-grating design with bandwidth of 20 GHz under direct modulation.
    Gerschütz F; Fischer M; Koeth J; Krestnikov I; Kovsh A; Schilling C; Kaiser W; Höfling S; Forchel A
    Opt Express; 2008 Apr; 16(8):5596-601. PubMed ID: 18542663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic crystal laser with mode selective mirrors.
    Moore SA; O'Faolain L; White TP; Krauss TF
    Opt Express; 2008 Jan; 16(2):1365-70. PubMed ID: 18542208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate.
    Tanabe K; Nomura M; Guimard D; Iwamoto S; Arakawa Y
    Opt Express; 2009 Apr; 17(9):7036-42. PubMed ID: 19399078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic-crystal microcavity laser with site-controlled quantum-wire active medium.
    Atlasov KA; Calic M; Karlsson KF; Gallo P; Rudra A; Dwir B; Kapon E
    Opt Express; 2009 Sep; 17(20):18178-83. PubMed ID: 19907608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and instabilities of mode-locked quantum-dot diode lasers.
    Li Y; Lester LF; Chang D; Langrock C; Fejer MM; Kane DJ
    Opt Express; 2013 Apr; 21(7):8007-17. PubMed ID: 23571891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-power in-band pumped Er:YAG laser at 1617 nm.
    Kim JW; Shen DY; Sahu JK; Clarkson WA
    Opt Express; 2008 Apr; 16(8):5807-12. PubMed ID: 18542691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emission properties and photon statistics of a single quantum dot laser.
    Ritter S; Gartner P; Gies C; Jahnke F
    Opt Express; 2010 May; 18(10):9909-21. PubMed ID: 20588843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dot microdrop laser.
    Schäfer J; Mondia JP; Sharma R; Lu ZH; Susha AS; Rogach AL; Wang LJ
    Nano Lett; 2008 Jun; 8(6):1709-12. PubMed ID: 18471023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses.
    Lu ZG; Liu JR; Poole PJ; Raymond S; Barrios PJ; Poitras D; Pakulski G; Grant P; Roy-Guay D
    Opt Express; 2009 Aug; 17(16):13609-14. PubMed ID: 19654768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dot dipole orientation and excitation efficiency of micropillar modes.
    Silva AG; Parra-Murillo CA; Valentim PT; Morais JS; Plentz F; Guimarães PS; Vinck-Posada H; Rodriguez BA; Skolnick MS; Tahraoui A; Hopkinson M
    Opt Express; 2008 Nov; 16(23):19201-7. PubMed ID: 19582012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.
    Kim J; Delfyett PJ
    Opt Express; 2008 Jul; 16(15):11153-61. PubMed ID: 18648430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory and experiment of submonolayer quantum-dot metal-cavity surface-emitting microlasers.
    Qiao P; Lu CY; Bimberg D; Chuang SL
    Opt Express; 2013 Dec; 21(25):30336-49. PubMed ID: 24514612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities.
    Tawara T; Kamada H; Zhang YH; Tanabe T; Cade NI; Ding D; Johnson SR; Gotoh H; Kuramochi E; Notomi M; Sogawa T
    Opt Express; 2008 Apr; 16(8):5199-205. PubMed ID: 18542622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser.
    Kéfélian F; O'Donoghue S; Todaro MT; McInerney J; Huyet G
    Opt Express; 2009 Apr; 17(8):6258-67. PubMed ID: 19365451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light.
    Bordas F; Seassal C; Dupuy E; Regreny P; Gendry M; Viktorovitch P; Steel MJ; Rahmani A
    Opt Express; 2009 Mar; 17(7):5439-45. PubMed ID: 19333310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum-dot quantum-interference infrared design proposal photodetector: and modeling of performance characteristics.
    Kwong NH; Binder R; Lindberg M
    Opt Lett; 2004 Nov; 29(21):2536-8. PubMed ID: 15584286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.