BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18542622)

  • 1. Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities.
    Tawara T; Kamada H; Zhang YH; Tanabe T; Cade NI; Ding D; Johnson SR; Gotoh H; Kuramochi E; Notomi M; Sogawa T
    Opt Express; 2008 Apr; 16(8):5199-205. PubMed ID: 18542622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate.
    Tanabe K; Nomura M; Guimard D; Iwamoto S; Arakawa Y
    Opt Express; 2009 Apr; 17(9):7036-42. PubMed ID: 19399078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast carrier dynamics in an InAs/InGaAs quantum dots-in-a-well heterostructure.
    Prasankumar RP; Attaluri RS; Averitt RD; Urayama J; Weisse-Bernstein N; Rotella P; Stintz AD; Krishna S; Taylor AJ
    Opt Express; 2008 Jan; 16(2):1165-73. PubMed ID: 18542190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers.
    Li F; Mi Z
    Opt Express; 2009 Oct; 17(22):19933-9. PubMed ID: 19997217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser.
    Djie HS; Ooi BS; Fang XM; Wu Y; Fastenau JM; Liu WK; Hopkinson M
    Opt Lett; 2007 Jan; 32(1):44-6. PubMed ID: 17167578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities.
    Lee A; Jiang Q; Tang M; Seeds A; Liu H
    Opt Express; 2012 Sep; 20(20):22181-7. PubMed ID: 23037366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes.
    Li F; Mi Z; Vicknesh S
    Opt Lett; 2009 Oct; 34(19):2915-7. PubMed ID: 19794766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1.3 microm quantum dot laser in coupled-cavity-injection-grating design with bandwidth of 20 GHz under direct modulation.
    Gerschütz F; Fischer M; Koeth J; Krestnikov I; Kovsh A; Schilling C; Kaiser W; Höfling S; Forchel A
    Opt Express; 2008 Apr; 16(8):5596-601. PubMed ID: 18542663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-brightness single photon source from a quantum dot in a directional-emission nanocavity.
    Toishi M; Englund D; Faraon A; Vucković J
    Opt Express; 2009 Aug; 17(17):14618-26. PubMed ID: 19687940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-brightness 1.3 μm InAs/GaAs quantum dot tapered laser with high temperature stability.
    Cao Y; Ji H; Xu P; Gu Y; Ma W; Yang T
    Opt Lett; 2012 Oct; 37(19):4071-3. PubMed ID: 23027282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers.
    Fedorova KA; Cataluna MA; Krestnikov I; Livshits D; Rafailov EU
    Opt Express; 2010 Aug; 18(18):19438-43. PubMed ID: 20940839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light.
    Bordas F; Seassal C; Dupuy E; Regreny P; Gendry M; Viktorovitch P; Steel MJ; Rahmani A
    Opt Express; 2009 Mar; 17(7):5439-45. PubMed ID: 19333310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer.
    Tanabe K; Guimard D; Bordel D; Iwamoto S; Arakawa Y
    Opt Express; 2010 May; 18(10):10604-8. PubMed ID: 20588912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index.
    Dündar MA; Ryckebosch EC; Nötzel R; Karouta F; van Ijzendoorn LJ; van der Heijden RW
    Opt Express; 2010 Mar; 18(5):4049-56. PubMed ID: 20389419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot.
    Verma VB; Stevens MJ; Silverman KL; Dias NL; Garg A; Coleman JJ; Mirin RP
    Opt Express; 2011 Feb; 19(5):4182-7. PubMed ID: 21369247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon.
    Yang J; Bhattacharya P
    Opt Express; 2008 Mar; 16(7):5136-40. PubMed ID: 18542613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature on the growth of InAs/GaAs quantum dots grown on a strained GaAs layer.
    Ahmad I; Avrutin V; Morkoç H; Moore JC; Baski AA
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2889-93. PubMed ID: 17685312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced spontaneous emission from InAs/GaAs quantum dots in pillar microcavities emitting at telecom wavelengths.
    Chauvin N; Balet L; Alloing B; Zinoni C; Li L; Fiore A; Grenouillet L; Gilet P; Olivier N; Tchelnokov A; Terrier M; Gérard JM
    Opt Lett; 2007 Sep; 32(18):2747-9. PubMed ID: 17873956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-controlled InGaAs quantum dots with tunable emission energy.
    Felici M; Gallo P; Mohan A; Dwir B; Rudra A; Kapon E
    Small; 2009 Apr; 5(8):938-43. PubMed ID: 19235797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated semiconductor nanocrystal and epitaxical nanostructure systems: structural and optical behavior.
    Madhukar A; Lu S; Konkar A; Zhang Y; Ho M; Hughes SM; Alivisatos AP
    Nano Lett; 2005 Mar; 5(3):479-82. PubMed ID: 15755098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.