These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 18543880)
1. Electron delocalization in the metallabenzenes: a computational analysis of ring currents. Periyasamy G; Burton NA; Hillier IH; Thomas JM J Phys Chem A; 2008 Jul; 112(26):5960-72. PubMed ID: 18543880 [TBL] [Abstract][Full Text] [Related]
2. Aromaticity in metallabenzenes. Fernández I; Frenking G Chemistry; 2007; 13(20):5873-84. PubMed ID: 17455184 [TBL] [Abstract][Full Text] [Related]
3. The induced magnetic field. Islas R; Heine T; Merino G Acc Chem Res; 2012 Feb; 45(2):215-28. PubMed ID: 21848282 [TBL] [Abstract][Full Text] [Related]
4. Relativistic ring currents in metallabenzenes: an analysis in terms of contributions of localised orbitals. Havenith RW; De Proft F; Jenneskens LW; Fowler PW Phys Chem Chem Phys; 2012 Jul; 14(28):9897-905. PubMed ID: 22710275 [TBL] [Abstract][Full Text] [Related]
5. Implications of molecular orbital symmetries and energies for the electron delocalization of inorganic clusters. Corminboeuf C; King RB; Schleyer Pv Chemphyschem; 2007 Feb; 8(3):391-8. PubMed ID: 17252618 [TBL] [Abstract][Full Text] [Related]
6. Evidence for d orbital aromaticity in square planar coinage metal clusters. Wannere CS; Corminboeuf C; Wang ZX; Wodrich MD; King RB; Schleyer PV J Am Chem Soc; 2005 Apr; 127(15):5701-5. PubMed ID: 15826211 [TBL] [Abstract][Full Text] [Related]
7. Interpretation of electron delocalization in benzene, cyclobutadiene, and borazine based on visualization of individual molecular orbital contributions to the induced magnetic field. Charistos ND; Papadopoulos AG; Sigalas MP J Phys Chem A; 2014 Feb; 118(6):1113-22. PubMed ID: 24444188 [TBL] [Abstract][Full Text] [Related]
8. Diagnosis of magnetoresponsive aromatic and antiaromatic zones in three-membered rings of d- and f-block elements. Tsipis AC; Depastas IG; Karagiannis EE; Tsipis CA J Comput Chem; 2010 Jan; 31(2):431-46. PubMed ID: 19499535 [TBL] [Abstract][Full Text] [Related]
12. Can Metallapyrimidines Be Aromatic? A Computational Study into a New Class of Metallacycles. Psciuk BT; Lord RL; Winter CH; Schlegel HB J Chem Theory Comput; 2012 Dec; 8(12):4950-9. PubMed ID: 26593189 [TBL] [Abstract][Full Text] [Related]
13. Aromaticity of giant polycyclic aromatic hydrocarbons with hollow sites: super ring currents in super-rings. Hajgató B; Deleuze MS; Ohno K Chemistry; 2006 Jul; 12(22):5757-69. PubMed ID: 16718724 [TBL] [Abstract][Full Text] [Related]
14. Aromaticity analysis of lithium cation/pi complexes of aromatic systems. Güell M; Poater J; Luis JM; Mó O; Yáñez M; Solà M Chemphyschem; 2005 Dec; 6(12):2552-61. PubMed ID: 16294351 [TBL] [Abstract][Full Text] [Related]
15. Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. Stanger A J Org Chem; 2006 Feb; 71(3):883-93. PubMed ID: 16438497 [TBL] [Abstract][Full Text] [Related]
16. Double aromaticity in monocyclic carbon, boron, and borocarbon rings based on magnetic criteria. Wodrich MD; Corminboeuf C; Park SS; Schleyer Pv Chemistry; 2007; 13(16):4582-93. PubMed ID: 17431868 [TBL] [Abstract][Full Text] [Related]
17. The electron density vs. NICS scan: a new approach to assess aromaticity in molecules with different ring sizes. Foroutan-Nejad C; Shahbazian S; Rashidi-Ranjbar P Phys Chem Chem Phys; 2010 Oct; 12(39):12630-7. PubMed ID: 20730168 [TBL] [Abstract][Full Text] [Related]
18. Local aromaticity of the six-membered rings in pyracylene. A difficult case for the NICS indicator of aromaticity. Poater J; Solà M; Viglione RG; Zanasi R J Org Chem; 2004 Oct; 69(22):7537-42. PubMed ID: 15497979 [TBL] [Abstract][Full Text] [Related]
19. Magnetic euripi in corannulene. Monaco G; Scott LT; Zanasi R J Phys Chem A; 2008 Sep; 112(35):8136-47. PubMed ID: 18693706 [TBL] [Abstract][Full Text] [Related]