BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18543958)

  • 1. Removal of residual metal catalysts with iron/iron oxide nanoparticles from coordinating environments.
    Macdonald JE; Veinot JG
    Langmuir; 2008 Jul; 24(14):7169-77. PubMed ID: 18543958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron/iron oxide nanoparticle sequestration of catalytic metal impurities from aqueous media and organic reaction products.
    Macdonald JE; Kelly JA; Veinot JG
    Langmuir; 2007 Sep; 23(19):9543-5. PubMed ID: 17705514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes.
    Pumera M; Iwai H
    Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration.
    Li XQ; Zhang WX
    Langmuir; 2006 May; 22(10):4638-42. PubMed ID: 16649775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination of tetradentate X2N2 (X = P, S, O) ligands to iron(II) metal center and catalytic application in the transfer hydrogenation of ketones.
    Buchard A; Heuclin H; Auffrant A; Le Goff XF; Le Floch P
    Dalton Trans; 2009 Mar; (9):1659-67. PubMed ID: 19421611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts.
    de Smit E; de Groot FM; Blume R; Hävecker M; Knop-Gericke A; Weckhuysen BM
    Phys Chem Chem Phys; 2010 Jan; 12(3):667-80. PubMed ID: 20066352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron and cobalt oxide and metallic nanoparticles prepared from ferritin.
    Hosein HA; Strongin DR; Allen M; Douglas T
    Langmuir; 2004 Nov; 20(23):10283-7. PubMed ID: 15518526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets.
    Pumera M
    Langmuir; 2007 May; 23(11):6453-8. PubMed ID: 17455966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-organic coordination interactions in Fe-terephthalic acid networks on Cu(100).
    Tait SL; Wang Y; Costantini G; Lin N; Baraldi A; Esch F; Petaccia L; Lizzit S; Kern K
    J Am Chem Soc; 2008 Feb; 130(6):2108-13. PubMed ID: 18189402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO(2)-gel films: nanoparticle morphology and catalytic activity.
    He J; Ichinose I; Kunitake T; Nakao A; Shiraishi Y; Toshima N
    J Am Chem Soc; 2003 Sep; 125(36):11034-40. PubMed ID: 12952485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-catalyzed propylene epoxidation by nitrous oxide: studies on the effects of alkali metal salts.
    Wang X; Zhang Q; Yang S; Wang Y
    J Phys Chem B; 2005 Dec; 109(49):23500-8. PubMed ID: 16375324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous electrochemical dissolution and passivation of iron growth catalysts in carbon nanotubes.
    Lyon JL; Stevenson KJ
    Langmuir; 2007 Oct; 23(22):11311-8. PubMed ID: 17910488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A one-dimensional network from the self-assembly of gold nanoparticles by a necklace-like polyelectrolyte template mediated by metallic ion coordination.
    Zhang J; Wang J; Xu X; Zhu H; Wang Z; Yang F; Zhang B; Yang X
    Nanotechnology; 2009 Jul; 20(29):295603. PubMed ID: 19567954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water.
    Geng B; Jin Z; Li T; Qi X
    Sci Total Environ; 2009 Sep; 407(18):4994-5000. PubMed ID: 19545888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(-3) Torr) to high pressure (>10(-3) Torr) to liquid interfaces.
    Somorjai GA; York RL; Butcher D; Park JY
    Phys Chem Chem Phys; 2007 Jul; 9(27):3500-13. PubMed ID: 17612717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of NO2 with model NSR catalysts: metal-oxide interaction controls initial NOx storage mechanism.
    Desikusumastuti A; Staudt T; Qin Z; Happel M; Laurin M; Lykhach Y; Shaikhutdinov S; Rohr F; Libuda J
    Chemphyschem; 2008 Oct; 9(15):2191-7. PubMed ID: 18846595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles.
    Rivero-Huguet M; Marshall WD
    J Hazard Mater; 2009 Sep; 169(1-3):1081-7. PubMed ID: 19446392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.