These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 18543997)
61. On the role of energy barriers in determining contact angle hysteresis. Long J; Chen P Adv Colloid Interface Sci; 2006 Nov; 127(2):55-66. PubMed ID: 17094933 [TBL] [Abstract][Full Text] [Related]
62. How Wenzel and cassie were wrong. Gao L; McCarthy TJ Langmuir; 2007 Mar; 23(7):3762-5. PubMed ID: 17315893 [TBL] [Abstract][Full Text] [Related]
63. Effects of the hierarchical structure of rough solid surfaces on the wetting of microdroplets. Zhang B; Wang J; Zhang X Langmuir; 2013 Jun; 29(22):6652-8. PubMed ID: 23659439 [TBL] [Abstract][Full Text] [Related]
64. On the validity of the Cassie equation via a mean-field free-energy lattice Boltzmann approach. Zhang J; Kwok DY J Colloid Interface Sci; 2005 Feb; 282(2):434-8. PubMed ID: 15589550 [TBL] [Abstract][Full Text] [Related]
65. The role of multiscale roughness in the Lotus effect: is it essential for super-hydrophobicity? Bittoun E; Marmur A Langmuir; 2012 Oct; 28(39):13933-42. PubMed ID: 22946829 [TBL] [Abstract][Full Text] [Related]
66. Cassie-state wetting investigated by means of a hole-to-pillar density gradient. Spori DM; Drobek T; Zürcher S; Spencer ND Langmuir; 2010 Jun; 26(12):9465-73. PubMed ID: 20486670 [TBL] [Abstract][Full Text] [Related]
68. On the possibility of superhydrophobic behavior for hydrophilic materials. Cui XS; Li W J Colloid Interface Sci; 2010 Jul; 347(1):156-62. PubMed ID: 20417521 [TBL] [Abstract][Full Text] [Related]
69. Stability of virtual air walls on micropallet arrays. Wang Y; Bachman M; Sims CE; Li GP; Allbritton NL Anal Chem; 2007 Sep; 79(18):7104-9. PubMed ID: 17705452 [TBL] [Abstract][Full Text] [Related]
70. A review of factors that affect contact angle and implications for flotation practice. Chau TT; Bruckard WJ; Koh PT; Nguyen AV Adv Colloid Interface Sci; 2009 Sep; 150(2):106-15. PubMed ID: 19664743 [TBL] [Abstract][Full Text] [Related]
71. Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates. Bormashenko E; Bormashenko Y; Stein T; Whyman G; Pogreb R; Barkay Z Langmuir; 2007 Apr; 23(8):4378-82. PubMed ID: 17367175 [TBL] [Abstract][Full Text] [Related]
73. Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Bormashenko E; Stein T; Whyman G; Bormashenko Y; Pogreb R Langmuir; 2006 Nov; 22(24):9982-5. PubMed ID: 17106989 [TBL] [Abstract][Full Text] [Related]
74. Revisiting the Critical Condition for the Cassie-Wenzel Transition on Micropillar-Structured Surfaces. Fang W; Guo HY; Li B; Li Q; Feng XQ Langmuir; 2018 Apr; 34(13):3838-3844. PubMed ID: 29513543 [TBL] [Abstract][Full Text] [Related]
75. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces. Jiang Y; Lian J; Jiang Z; Li Y; Wen C Adv Colloid Interface Sci; 2020 Apr; 278():102136. PubMed ID: 32171897 [TBL] [Abstract][Full Text] [Related]
76. Wetting states on circular micropillars with convex sidewalls after liquids contact groove base. Luo C; Xiang M Langmuir; 2013 Dec; 29(48):15065-75. PubMed ID: 24236544 [TBL] [Abstract][Full Text] [Related]
77. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Nosonovsky M; Bhushan B Ultramicroscopy; 2007 Oct; 107(10-11):969-79. PubMed ID: 17570591 [TBL] [Abstract][Full Text] [Related]
78. Apparent contact angles for reactive wetting of smooth, rough, and heterogeneous surfaces calculated from the variational principles. Bormashenko E J Colloid Interface Sci; 2019 Mar; 537():597-603. PubMed ID: 30471614 [TBL] [Abstract][Full Text] [Related]
79. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces. Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892 [TBL] [Abstract][Full Text] [Related]
80. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]