These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18544041)

  • 41. Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons.
    Vivanco-Domínguez S; Bueno-Martínez J; León-Avila G; Iwakura N; Kaji A; Kaji H; Guarneros G
    J Mol Biol; 2012 Apr; 417(5):425-39. PubMed ID: 22326347
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Principles of stop-codon reading on the ribosome.
    Sund J; Andér M; Aqvist J
    Nature; 2010 Jun; 465(7300):947-50. PubMed ID: 20512119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent mechanistic insights into eukaryotic ribosomes.
    Rodnina MV; Wintermeyer W
    Curr Opin Cell Biol; 2009 Jun; 21(3):435-43. PubMed ID: 19243929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis.
    Ito K; Ebihara K; Uno M; Nakamura Y
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5443-8. PubMed ID: 8643594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Instruction of translating ribosome by nascent peptide.
    Gong F; Yanofsky C
    Science; 2002 Sep; 297(5588):1864-7. PubMed ID: 12228716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. eIF3j facilitates loading of release factors into the ribosome.
    Egorova T; Biziaev N; Shuvalov A; Sokolova E; Mukba S; Evmenov K; Zotova M; Kushchenko A; Shuvalova E; Alkalaeva E
    Nucleic Acids Res; 2021 Nov; 49(19):11181-11196. PubMed ID: 34591963
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release.
    Youngman EM; He SL; Nikstad LJ; Green R
    Mol Cell; 2007 Nov; 28(4):533-43. PubMed ID: 18042450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release.
    Jin H; Kelley AC; Loakes D; Ramakrishnan V
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8593-8. PubMed ID: 20421507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways.
    Burroughs AM; Aravind L
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018531
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Release factor binding to ribosome requires an intact 16 S rRNA 3' terminus.
    Caskey CT; Bosch L; Konecki DS
    J Biol Chem; 1977 Jul; 252(13):4435-7. PubMed ID: 326774
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity.
    Moffat JG; Tate WP
    J Biol Chem; 1994 Jul; 269(29):18899-903. PubMed ID: 8034646
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetics of stop codon recognition by release factor 1.
    Hetrick B; Lee K; Joseph S
    Biochemistry; 2009 Dec; 48(47):11178-84. PubMed ID: 19874047
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mutations at the accommodation gate of the ribosome impair RF2-dependent translation termination.
    Burakovsky DE; Sergiev PV; Steblyanko MA; Kubarenko AV; Konevega AL; Bogdanov AA; Rodnina MV; Dontsova OA
    RNA; 2010 Sep; 16(9):1848-53. PubMed ID: 20668033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Operative Binding of Class I Release Factors and YaeJ Stabilizes the Ribosome in the Nonrotated State.
    Casy W; Prater AR; Cornish PV
    Biochemistry; 2018 Apr; 57(13):1954-1966. PubMed ID: 29499110
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ribosomal release without peptidyl tRNA hydrolysis at translation termination in a eukaryotic system.
    Cao J; Geballe AP
    RNA; 1998 Feb; 4(2):181-8. PubMed ID: 9570317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blasticidin S inhibits mammalian translation and enhances production of protein encoded by nonsense mRNA.
    Powers KT; Stevenson-Jones F; Yadav SKN; Amthor B; Bufton JC; Borucu U; Shen D; Becker JP; Lavysh D; Hentze MW; Kulozik AE; Neu-Yilik G; Schaffitzel C
    Nucleic Acids Res; 2021 Jul; 49(13):7665-7679. PubMed ID: 34157102
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The ribosomal binding and peptidyl-tRNA hydrolysis functions of Escherichia coli release factor 2 are linked through residue 246.
    Wilson DN; Guévremont D; Tate WP
    RNA; 2000 Dec; 6(12):1704-13. PubMed ID: 11142371
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ribosomal catalysis: the evolution of mechanistic concepts for peptide bond formation and peptidyl-tRNA hydrolysis.
    Erlacher MD; Polacek N
    RNA Biol; 2008; 5(1):5-12. PubMed ID: 18388484
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Histidine 197 in release factor 1 is essential for a site binding and peptide release.
    Field A; Hetrick B; Mathew M; Joseph S
    Biochemistry; 2010 Nov; 49(43):9385-90. PubMed ID: 20873815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The structural basis for release-factor activation during translation termination revealed by time-resolved cryogenic electron microscopy.
    Fu Z; Indrisiunaite G; Kaledhonkar S; Shah B; Sun M; Chen B; Grassucci RA; Ehrenberg M; Frank J
    Nat Commun; 2019 Jun; 10(1):2579. PubMed ID: 31189921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.