These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Reconciling the chemistry and biology of reactive oxygen species. Winterbourn CC Nat Chem Biol; 2008 May; 4(5):278-86. PubMed ID: 18421291 [TBL] [Abstract][Full Text] [Related]
3. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Haddad JJ; Harb HL Mol Immunol; 2005 May; 42(9):987-1014. PubMed ID: 15829290 [TBL] [Abstract][Full Text] [Related]
4. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Nair S; Li W; Kong AN Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285 [TBL] [Abstract][Full Text] [Related]
5. Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis. Baty JW; Hampton MB; Winterbourn CC Proteomics; 2002 Sep; 2(9):1261-6. PubMed ID: 12362344 [TBL] [Abstract][Full Text] [Related]
6. Signaling by the respiratory burst in macrophages. Forman HJ; Torres M IUBMB Life; 2001 Jun; 51(6):365-71. PubMed ID: 11758804 [TBL] [Abstract][Full Text] [Related]
7. Reactive oxygen species and signal transduction. Finkel T IUBMB Life; 2001 Jul; 52(1-2):3-6. PubMed ID: 11795590 [TBL] [Abstract][Full Text] [Related]
8. Thiol oxidation of cell signaling proteins: Controlling an apoptotic equilibrium. Cross JV; Templeton DJ J Cell Biochem; 2004 Sep; 93(1):104-11. PubMed ID: 15352167 [TBL] [Abstract][Full Text] [Related]
9. Thiolation and nitrosation of cysteines in biological fluids and cells. Di Simplicio P; Franconi F; FrosalĂ S; Di Giuseppe D Amino Acids; 2003 Dec; 25(3-4):323-39. PubMed ID: 14661094 [TBL] [Abstract][Full Text] [Related]
11. Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment. Haddad JJ Int Immunopharmacol; 2004 Apr; 4(4):475-93. PubMed ID: 15099526 [TBL] [Abstract][Full Text] [Related]
12. Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Haase H; Maret W Biometals; 2005 Aug; 18(4):333-8. PubMed ID: 16158225 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Gallogly MM; Mieyal JJ Curr Opin Pharmacol; 2007 Aug; 7(4):381-91. PubMed ID: 17662654 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide and cell signaling: modulation of redox tone and protein modification. Landar A; Darley-Usmar VM Amino Acids; 2003 Dec; 25(3-4):313-21. PubMed ID: 14661093 [TBL] [Abstract][Full Text] [Related]
16. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins. Conway ME; Coles SJ; Islam MM; Hutson SM Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134 [TBL] [Abstract][Full Text] [Related]
17. Are free radicals involved in thiol-based redox signaling? Winterbourn CC Free Radic Biol Med; 2015 Mar; 80():164-70. PubMed ID: 25277419 [TBL] [Abstract][Full Text] [Related]
18. Oxidative modification of protein tyrosine phosphatases. Wu RF; Terada LS Sci STKE; 2006 Apr; 2006(332):pl2. PubMed ID: 16639034 [TBL] [Abstract][Full Text] [Related]
19. Peroxiredoxins as preferential targets in H2O2-induced signaling. Randall LM; Ferrer-Sueta G; Denicola A Methods Enzymol; 2013; 527():41-63. PubMed ID: 23830625 [TBL] [Abstract][Full Text] [Related]
20. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics. Hu W; Tedesco S; Faedda R; Petrone G; Cacciola SO; O'Keefe A; Sheehan D Talanta; 2010 Feb; 80(4):1569-75. PubMed ID: 20082816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]