These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 18544601)

  • 21. Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination.
    Wilks SA; Michels HT; Keevil CW
    Int J Food Microbiol; 2006 Sep; 111(2):93-8. PubMed ID: 16876278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocide Resistance and Transmission of Clostridium difficile Spores Spiked onto Clinical Surfaces from an American Health Care Facility.
    Dyer C; Hutt LP; Burky R; Joshi LT
    Appl Environ Microbiol; 2019 Sep; 85(17):. PubMed ID: 31300397
    [No Abstract]   [Full Text] [Related]  

  • 23. Inhibitory effect of REP3123 on toxin and spore formation in Clostridium difficile, and in vivo efficacy in a hamster gastrointestinal infection model.
    Ochsner UA; Bell SJ; O'Leary AL; Hoang T; Stone KC; Young CL; Critchley IA; Janjic N
    J Antimicrob Chemother; 2009 May; 63(5):964-71. PubMed ID: 19251726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the efficacy of different microfibre cloths at removing surface micro-organisms associated with healthcare-associated infections.
    Smith DL; Gillanders S; Holah JT; Gush C
    J Hosp Infect; 2011 Jul; 78(3):182-6. PubMed ID: 21501897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study.
    Karpanen TJ; Casey AL; Lambert PA; Cookson BD; Nightingale P; Miruszenko L; Elliott TS
    Infect Control Hosp Epidemiol; 2012 Jan; 33(1):3-9. PubMed ID: 22173515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clostridium difficile ribotypes 027 and 106: clinical outcomes and risk factors.
    Sundram F; Guyot A; Carboo I; Green S; Lilaonitkul M; Scourfield A
    J Hosp Infect; 2009 Jun; 72(2):111-8. PubMed ID: 19386381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disinfection of irreversible hydrocolloid impression material with chlorinated compounds.
    Rweyendela IH; Patel M; Owen CP
    SADJ; 2009 Jun; 64(5):208, 210-2. PubMed ID: 19725332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of hydrogen peroxide vapour as a method for the decontamination of surfaces contaminated with Clostridium botulinum spores.
    Johnston MD; Lawson S; Otter JA
    J Microbiol Methods; 2005 Mar; 60(3):403-11. PubMed ID: 15649542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What have we learned about antimicrobial use and the risks for Clostridium difficile-associated diarrhoea?
    Blondeau JM
    J Antimicrob Chemother; 2009 Feb; 63(2):238-42. PubMed ID: 19028718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Comparison of susceptibility of spores of Bacillus subtilis and Czech strains of Clostridium difficile to disinfectants].
    Votava M; Slitrová B
    Epidemiol Mikrobiol Imunol; 2009 Feb; 58(1):36-42. PubMed ID: 19358452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimicrobial efficacy of the silver wound dressing Biatain Ag in a disc carrier test simulating wound secretion.
    Ebert M; Assadian O; Hübner NO; Koburger T; Kramer A; ;
    Skin Pharmacol Physiol; 2011; 24(6):337-41. PubMed ID: 21832866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clostridium difficile spore germination: an update.
    Burns DA; Heap JT; Minton NP
    Res Microbiol; 2010 Nov; 161(9):730-4. PubMed ID: 20863888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficacy of "sporicidal" wipes against Clostridium difficile.
    Siani H; Cooper C; Maillard JY
    Am J Infect Control; 2011 Apr; 39(3):212-8. PubMed ID: 21458683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of hospital biocide sodium dichloroisocyanurate on the viability and properties of Clostridium difficile spores.
    Joshi LT; Welsch A; Hawkins J; Baillie L
    Lett Appl Microbiol; 2017 Sep; 65(3):199-205. PubMed ID: 28639362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction in infection risk through treatment of microbially contaminated surfaces with a novel, portable, saturated steam vapor disinfection system.
    Tanner BD
    Am J Infect Control; 2009 Feb; 37(1):20-7. PubMed ID: 18834748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment.
    Davies A; Pottage T; Bennett A; Walker J
    J Hosp Infect; 2011 Mar; 77(3):199-203. PubMed ID: 21130521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved recovery of Clostridium difficile spores with the incorporation of synthetic taurocholate in cycloserine-cefoxitin-fructose agar (CCFA).
    Foster NF; Riley TV
    Pathology; 2012 Jun; 44(4):354-6. PubMed ID: 22531346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
    Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R
    Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of a novel decontamination process using gaseous ozone.
    Moat J; Cargill J; Shone J; Upton M
    Can J Microbiol; 2009 Aug; 55(8):928-33. PubMed ID: 19898532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro activity of OPT-80 against Clostridium difficile.
    Ackermann G; Löffler B; Adler D; Rodloff AC
    Antimicrob Agents Chemother; 2004 Jun; 48(6):2280-2. PubMed ID: 15155234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.