These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18544747)

  • 1. ROCO kinase activity is controlled by internal GTPase function.
    Weiss B
    Sci Signal; 2008 Jun; 1(23):pe27. PubMed ID: 18544747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Parkinson disease gene LRRK2: evolutionary and structural insights.
    MarĂ­n I
    Mol Biol Evol; 2006 Dec; 23(12):2423-33. PubMed ID: 16966681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations.
    Rudi K; Ho FY; Gilsbach BK; Pots H; Wittinghofer A; Kortholt A; Klare JP
    Biosci Rep; 2015 Aug; 35(5):. PubMed ID: 26310572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity.
    Guo L; Gandhi PN; Wang W; Petersen RB; Wilson-Delfosse AL; Chen SG
    Exp Cell Res; 2007 Oct; 313(16):3658-70. PubMed ID: 17706965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants.
    Li X; Tan YC; Poulose S; Olanow CW; Huang XY; Yue Z
    J Neurochem; 2007 Oct; 103(1):238-47. PubMed ID: 17623048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the Roco G-protein cycle.
    Terheyden S; Ho FY; Gilsbach BK; Wittinghofer A; Kortholt A
    Biochem J; 2015 Jan; 465(1):139-47. PubMed ID: 25317655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment.
    Klein CL; Rovelli G; Springer W; Schall C; Gasser T; Kahle PJ
    J Neurochem; 2009 Nov; 111(3):703-15. PubMed ID: 19712061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The R1441C mutation of LRRK2 disrupts GTP hydrolysis.
    Lewis PA; Greggio E; Beilina A; Jain S; Baker A; Cookson MR
    Biochem Biophys Res Commun; 2007 Jun; 357(3):668-71. PubMed ID: 17442267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unconventional G-protein cycle of LRRK2 and Roco proteins.
    Terheyden S; Nederveen-Schippers LM; Kortholt A
    Biochem Soc Trans; 2016 Dec; 44(6):1611-1616. PubMed ID: 27913669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2.
    Biosa A; Trancikova A; Civiero L; Glauser L; Bubacco L; Greggio E; Moore DJ
    Hum Mol Genet; 2013 Mar; 22(6):1140-56. PubMed ID: 23241358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of GTPase activity to LRRK2-associated Parkinson disease.
    Tsika E; Moore DJ
    Small GTPases; 2013; 4(3):164-70. PubMed ID: 24025585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity.
    Nguyen AP; Moore DJ
    Adv Neurobiol; 2017; 14():71-88. PubMed ID: 28353279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Roc-COR tandem domain of leucine-rich repeat kinase 2 forms dimers and exhibits conventional Ras-like GTPase properties.
    Mills RD; Liang LY; Lio DS; Mok YF; Mulhern TD; Cao G; Griffin M; Kenche VB; Culvenor JG; Cheng HC
    J Neurochem; 2018 Nov; 147(3):409-428. PubMed ID: 30091236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity.
    Gloeckner CJ; Kinkl N; Schumacher A; Braun RJ; O'Neill E; Meitinger T; Kolch W; Prokisch H; Ueffing M
    Hum Mol Genet; 2006 Jan; 15(2):223-32. PubMed ID: 16321986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucine-rich repeat kinase 2: relevance to Parkinson's disease.
    Guo L; Wang W; Chen SG
    Int J Biochem Cell Biol; 2006; 38(9):1469-75. PubMed ID: 16600664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The GTPase function of LRRK2.
    Taymans JM
    Biochem Soc Trans; 2012 Oct; 40(5):1063-9. PubMed ID: 22988866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase.
    Deng J; Lewis PA; Greggio E; Sluch E; Beilina A; Cookson MR
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1499-504. PubMed ID: 18230735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?
    Civiero L; Bubacco L
    Biochem Soc Trans; 2012 Oct; 40(5):1095-101. PubMed ID: 22988872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the repeat domain structures and impact of parkinsonism-associated variations on structure and function of all functional domains of leucine-rich repeat kinase 2 (LRRK2).
    Mills RD; Mulhern TD; Liu F; Culvenor JG; Cheng HC
    Hum Mutat; 2014 Apr; 35(4):395-412. PubMed ID: 24470158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LRRK2 autophosphorylation enhances its GTPase activity.
    Liu Z; Mobley JA; DeLucas LJ; Kahn RA; West AB
    FASEB J; 2016 Jan; 30(1):336-47. PubMed ID: 26396237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.