These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 18544814)

  • 1. Low-noise current excitation sub-system for medical EIT.
    Rafiei-Naeini M; McCann H
    Physiol Meas; 2008 Jun; 29(6):S173-84. PubMed ID: 18544814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of a new integrated current source with the modified Howland circuit for EIT applications.
    Hong H; Rahal M; Demosthenous A; Bayford RH
    Physiol Meas; 2009 Oct; 30(10):999-1007. PubMed ID: 19706961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-frequency EIT system with radially symmetric architecture: KHU Mark1.
    Oh TI; Woo EJ; Holder D
    Physiol Meas; 2007 Jul; 28(7):S183-96. PubMed ID: 17664635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An experimental system of induced-current EIT].
    Dong X; You F; Qin M; Shi X; Liu R; Xiang H; Fu F; Cui W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):416-9. PubMed ID: 15250146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A broadband high-frequency electrical impedance tomography system for breast imaging.
    Halter RJ; Hartov A; Paulsen KD
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):650-9. PubMed ID: 18270001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
    Woo EJ; Seo JK
    Physiol Meas; 2008 Oct; 29(10):R1-26. PubMed ID: 18799834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system.
    Liu J; Qiao X; Wang M; Zhang W; Li G; Lin L
    Rev Sci Instrum; 2014 May; 85(5):055111. PubMed ID: 24880419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of applied and induced current electrical impedance tomography.
    Tanguay LF; Gagnon H; Guardo R
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1643-9. PubMed ID: 17867356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for removing artefacts from continuous EEG recordings during functional electrical impedance tomography for the detection of epileptic seizures.
    Fabrizi L; Yerworth R; McEwan A; Gilad O; Bayford R; Holder DS
    Physiol Meas; 2010 Aug; 31(8):S57-72. PubMed ID: 20647617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration methods for a multi-channel multi-frequency EIT system.
    Oh TI; Lee KH; Kim SM; Koo H; Woo EJ; Holder D
    Physiol Meas; 2007 Oct; 28(10):1175-88. PubMed ID: 17906386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of errors in multi-frequency EIT instrumentation.
    McEwan A; Cusick G; Holder DS
    Physiol Meas; 2007 Jul; 28(7):S197-215. PubMed ID: 17664636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DSP based multi-frequency 3D electrical impedance tomography system.
    Goharian M; Soleimani M; Jegatheesan A; Chin K; Moran GR
    Ann Biomed Eng; 2008 Sep; 36(9):1594-603. PubMed ID: 18629646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic errors of EIT systems determined by easily-scalable resistive phantoms.
    Hahn G; Just A; Dittmar J; Hellige G
    Physiol Meas; 2008 Jun; 29(6):S163-72. PubMed ID: 18544805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatible, high precision, wideband, improved Howland current source with lead-lag compensation.
    Tucker AS; Fox RM; Sadleir RJ
    IEEE Trans Biomed Circuits Syst; 2013 Feb; 7(1):63-70. PubMed ID: 23853280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-electrode autonomous current generator for multi-frequency EIT.
    Jivet I; Dragoi B
    Physiol Meas; 2008 Jun; 29(6):S193-201. PubMed ID: 18544811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal image reconstruction in electrical impedance tomography.
    Adler A; Dai T; Lionheart WR
    Physiol Meas; 2007 Jul; 28(7):S1-11. PubMed ID: 17664627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of resting noise characteristics of three EIT systems in order to compare suitability for time difference imaging with scalp electrodes during epileptic seizures.
    Fabrizi L; McEwan A; Woo E; Holder DS
    Physiol Meas; 2007 Jul; 28(7):S217-36. PubMed ID: 17664637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [In vivo measurement of rabbits brain impedance frequency response and the elementary imaging of EIT].
    Wu X; Dong X; Qin M; Fu F; Wang Y; You F; Xiang H; Liu R; Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):49-51. PubMed ID: 12744161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A resistive mesh phantom for assessing the performance of EIT systems.
    Gagnon H; Cousineau M; Adler A; Hartinger AE
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2257-66. PubMed ID: 20550982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient examinations using electrical impedance tomography--sources of interference in the intensive care unit.
    Frerichs I; Pulletz S; Elke G; Gawelczyk B; Frerichs A; Weiler N
    Physiol Meas; 2011 Dec; 32(12):L1-10. PubMed ID: 22031540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.