BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 18544934)

  • 1. Chromosomal evolution and distribution of telomeric repeats in golden moles (Chrysochloridae, Mammalia).
    Gilbert C; Maree S; Robinson TJ
    Cytogenet Genome Res; 2008; 121(2):110-9. PubMed ID: 18544934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome painting and molecular dating indicate a low rate of chromosomal evolution in golden moles (Mammalia, Chrysochloridae).
    Gilbert C; O'Brien PC; Bronner G; Yang F; Hassanin A; Ferguson-Smith MA; Robinson TJ
    Chromosome Res; 2006; 14(8):793-803. PubMed ID: 17180635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phylogenetic estimate for golden moles (Mammalia, Afrotheria, Chrysochloridae).
    Asher RJ; Maree S; Bronner G; Bennett NC; Bloomer P; Czechowski P; Meyer M; Hofreiter M
    BMC Evol Biol; 2010 Mar; 10():69. PubMed ID: 20214773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights from RADseq data on differentiation in the Hottentot golden mole species complex from South Africa.
    Mynhardt S; Bennett NC; Bloomer P
    Mol Phylogenet Evol; 2020 Feb; 143():106667. PubMed ID: 31676418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of telomeric (TTAGGG)(n) sequences in avian chromosomes.
    Nanda I; Schrama D; Feichtinger W; Haaf T; Schartl M; Schmid M
    Chromosoma; 2002 Nov; 111(4):215-27. PubMed ID: 12424522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of telomeric DNA and the extent of karyotypic evolution.
    Pathak S; Dolhonde JA; Multani AS
    Cytobios; 1998; 93(374):141-6. PubMed ID: 9779588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative cytogenetics of moles (Eulipotyphla, Talpidae): chromosomal differences in Talpa romana and T. europaea.
    Gornung E; Volleth M; Capanna E; Castiglia R
    Cytogenet Genome Res; 2008; 121(3-4):249-54. PubMed ID: 18758166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-telomeric sites as evidence of chromosomal rearrangement and repetitive (TTAGGG)n arrays in heterochromatic and euchromatic regions in four species of Akodon (Rodentia, Muridae).
    Ventura K; Silva MJ; Fagundes V; Christoff AU; Yonenaga-Yassuda Y
    Cytogenet Genome Res; 2006; 115(2):169-75. PubMed ID: 17065799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Karyotype evolution of eulipotyphla (insectivora): the genome homology of seven sorex species revealed by comparative chromosome painting and banding data.
    Biltueva L; Vorobieva N; Perelman P; Trifonov V; Volobouev V; Panov V; Ilyashenko V; Onischenko S; O'Brien P; Yang F; Ferguson-Smith M; Graphodatsky A
    Cytogenet Genome Res; 2011; 135(1):51-64. PubMed ID: 21912114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA.
    Martins C; Ferreira IA; Oliveira C; Foresti F; Galetti PM
    Genetica; 2006 May; 127(1-3):133-41. PubMed ID: 16850219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three Blind Moles: Molecular Evolutionary Insights on the Tempo and Mode of Convergent Eye Degeneration in
    Springer MS; Emerling CA; Gatesy J
    Genes (Basel); 2023 Oct; 14(11):. PubMed ID: 38002961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telomeric repeats far from the ends: mechanisms of origin and role in evolution.
    Ruiz-Herrera A; Nergadze SG; Santagostino M; Giulotto E
    Cytogenet Genome Res; 2008; 122(3-4):219-28. PubMed ID: 19188690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences.
    Saito Y; Edpalina RR; Abe S
    Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotypes of Kirk's dik-dik (Madoqua kirkii,Bovidae) show multiple tandem fusions.
    Cernohorska H; Kubickova S; Vahala J; Robinson TJ; Rubes J
    Cytogenet Genome Res; 2011; 132(4):255-63. PubMed ID: 21124018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Karyotypic evolution and organization of the highly repetitive DNA sequences in the Japanese shrew-moles, Dymecodon pilirostris and Urotrichus talpoides.
    Nakata A; Yoshimura A; Kuro-o M; Obara Y
    Cytogenet Genome Res; 2005; 111(2):152-8. PubMed ID: 16103657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative chromosome painting between chicken and spectacled owl (Pulsatrix perspicillata): implications for chromosomal evolution in the Strigidae (Aves, Strigiformes).
    de Oliveira EH; de Moura SP; dos Anjos LJ; Nagamachi CY; Pieczarka JC; O'Brien PC; Ferguson-Smith MA
    Cytogenet Genome Res; 2008; 122(2):157-62. PubMed ID: 19096211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Karyotypic similarity among Barycholos ternetzi and five species of the genus Eleutherodactylus from southeastern Brazil (Anura, Brachycephalidae).
    Campos JR; Ananias F; Haddad CF; Kasahara S
    Micron; 2008; 39(2):151-9. PubMed ID: 17161607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of (TTAGGG)n telomeric sequences in karyotypes of the Xenopus species complex.
    Nanda I; Fugate M; Steinlein C; Schmid M
    Cytogenet Genome Res; 2008; 122(3-4):396-400. PubMed ID: 19188711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do time, heterochromatin, NORs, or chromosomal rearrangements correlate with distribution of interstitial telomeric repeats in Sigmodon (cotton rats)?
    Swier VJ; Anwarali Khan FA; Baker RJ
    J Hered; 2012 Jul; 103(4):493-502. PubMed ID: 22593602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal study of native and hatchery trouts from Italy (Salmo trutta complex, Salmonidae): conventional and FISH analysis.
    Caputo V; Giovannotti M; Nisi Cerioni P; Splendiani A; Olmo E
    Cytogenet Genome Res; 2009; 124(1):51-62. PubMed ID: 19372669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.