BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 18545422)

  • 1. A metamaterial absorber for the terahertz regime: design, fabrication and characterization.
    Tao H; Landy NI; Bingham CM; Zhang X; Averitt RD; Padilla WJ
    Opt Express; 2008 May; 16(10):7181-8. PubMed ID: 18545422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization insensitive terahertz metamaterial absorber.
    Grant J; Ma Y; Saha S; Lok LB; Khalid A; Cumming DR
    Opt Lett; 2011 Apr; 36(8):1524-6. PubMed ID: 21499411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing negative refractive index of metamaterials by terahertz time-domain spectroscopy.
    Han J
    Opt Express; 2008 Jan; 16(2):1354-64. PubMed ID: 18542207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.
    Wen QY; Xie YS; Zhang HW; Yang QH; Li YX; Liu YL
    Opt Express; 2009 Oct; 17(22):20256-65. PubMed ID: 19997251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Fabrication of a Triple-Band Terahertz Metamaterial Absorber.
    Wang J; Lang T; Hong Z; Xiao M; Yu J
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Configurable metamaterial absorber with pseudo wideband spectrum.
    Zhu W; Huang Y; Rukhlenko ID; Wen G; Premaratne M
    Opt Express; 2012 Mar; 20(6):6616-21. PubMed ID: 22418545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy.
    Minowa Y; Fujii T; Nagai M; Ochiai T; Sakoda K; Hirao K; Tanaka K
    Opt Express; 2008 Mar; 16(7):4785-96. PubMed ID: 18542577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.
    Iwaszczuk K; Strikwerda AC; Fan K; Zhang X; Averitt RD; Jepsen PU
    Opt Express; 2012 Jan; 20(1):635-43. PubMed ID: 22274387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-band planar electric metamaterial in the terahertz regime.
    Yuan Y; Bingham C; Tyler T; Palit S; Hand TH; Padilla WJ; Smith DR; Jokerst NM; Cummer SA
    Opt Express; 2008 Jun; 16(13):9746-52. PubMed ID: 18575543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation, fabrication and characterization of THz metamaterial absorbers.
    Grant JP; McCrindle IJ; Cumming DR
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability.
    Han J; Lakhtakia A; Qiu CW
    Opt Express; 2008 Sep; 16(19):14390-6. PubMed ID: 18794974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation and analysis of a metamaterial sensor based on a microring resonator.
    Huang M; Yang J; Jun S; Mu S; Lan Y
    Sensors (Basel); 2011; 11(6):5886-99. PubMed ID: 22163933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on a terahertz biosensor based on graphene-metamaterial.
    Liu J; Fan L; Su J; Yang S; Luo H; Shen X; Ding F
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121527. PubMed ID: 35753099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.
    Liu R; Cheng Q; Chin JY; Mock JJ; Cui TJ; Smith DR
    Opt Express; 2009 Nov; 17(23):21030-41. PubMed ID: 19997341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering resonances in infrared metamaterials.
    Kanté B; de Lustrac A; Lourtioz JM; Gadot F
    Opt Express; 2008 May; 16(10):6774-84. PubMed ID: 18545380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative phase advance in polarization independent, multi-layer negative-index metamaterials.
    Aydin K; Li Z; Sahin L; Ozbay E
    Opt Express; 2008 Jun; 16(12):8835-44. PubMed ID: 18545596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband plasmon induced transparency in terahertz metamaterials.
    Zhu Z; Yang X; Gu J; Jiang J; Yue W; Tian Z; Tonouchi M; Han J; Zhang W
    Nanotechnology; 2013 May; 24(21):214003. PubMed ID: 23618809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency.
    Zhang Y; Feng Y; Zhu B; Zhao J; Jiang T
    Opt Express; 2014 Sep; 22(19):22743-52. PubMed ID: 25321743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-band metamaterial absorber based on the arrangement of donut-type resonators.
    Park JW; Tuong PV; Rhee JY; Kim KW; Jang WH; Choi EH; Chen LY; Lee Y
    Opt Express; 2013 Apr; 21(8):9691-702. PubMed ID: 23609678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin multi-band planar metamaterial absorber based on standing wave resonances.
    Peng XY; Wang B; Lai S; Zhang DH; Teng JH
    Opt Express; 2012 Dec; 20(25):27756-65. PubMed ID: 23262721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.