These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18545431)

  • 1. Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters.
    Wang Y; Bartelt H; Brueckner S; Kobelke J; Rothhardt M; Mörl K; Ecke W; Willsch R
    Opt Express; 2008 May; 16(10):7258-63. PubMed ID: 18545431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges.
    Xiao L; Jin W; Demokan MS
    Opt Lett; 2007 Jan; 32(2):115-7. PubMed ID: 17186035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing.
    Chen Z; Xiong C; Xiao LM; Wadsworth WJ; Birks TA
    Opt Lett; 2009 Jul; 34(14):2240-2. PubMed ID: 19823561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression.
    Kristensen JT; Houmann A; Liu X; Turchinovich D
    Opt Express; 2008 Jun; 16(13):9986-95. PubMed ID: 18575569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-assisted low-loss fusion splicing between photonic crystal fiber and single-mode fiber.
    Zhu T; Xiao F; Xu L; Liu M; Deng M; Chiang KS
    Opt Express; 2012 Oct; 20(22):24465-71. PubMed ID: 23187209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental analysis of splicing between the photonic crystal fiber and the conventional fiber using grin fibers.
    Ouyang DQ; Guo CY; Ruan SC; Wu YM; Yang JH; Lin HQ; Wei HF
    Appl Opt; 2012 Dec; 51(36):8516-20. PubMed ID: 23262588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells.
    Thapa R; Knabe K; Corwin KL; Washburn BR
    Opt Express; 2006 Oct; 14(21):9576-83. PubMed ID: 19529347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing.
    Ou Z; Yu Y; Yan P; Wang J; Huang Q; Chen X; Du C; Wei H
    Opt Express; 2013 Oct; 21(20):23812-21. PubMed ID: 24104292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and analysis for a bend-resistant and large-mode-area photonic crystal fiber with hybrid cladding.
    Qin Y; Yang H; Jiang P; Gui F; Caiyang W; Cao B
    Appl Opt; 2018 May; 57(14):3976-3982. PubMed ID: 29791368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the splice loss between photonic-bandgap fibers and conventional single-mode fibers.
    Aghaie KZ; Digonnet MJ; Fan S
    Opt Lett; 2010 Jun; 35(12):1938-40. PubMed ID: 20548345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and characterization of single-mode holey fibers with low bending losses.
    Tsuchida Y; Saitoh K; Koshiba M
    Opt Express; 2005 Jun; 13(12):4770-9. PubMed ID: 19495395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photopolymer microtips for efficient light coupling between single-mode fibers and photonic crystal fibers.
    Xiao L; Jin W; Demokan MS; Ho HL; Tam HY; Ju J; Yu J
    Opt Lett; 2006 Jun; 31(12):1791-3. PubMed ID: 16729072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light beam coupling between standard single mode fibers and highly nonlinear photonic crystal fibers based on the fused biconical tapering technique.
    Liu J; Cheng TH; Yeo YK; Wang Y; Xue L; Xu Z; Wang D
    Opt Express; 2009 Mar; 17(5):3115-23. PubMed ID: 19259147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modal cutoff properties in germanium-doped photonic crystal fiber.
    Liu J; Kai G; Xue L; Wang Z; Liu Y; Li Y; Zhang C; Sun T; Dong X
    Appl Opt; 2006 Mar; 45(9):2035-8. PubMed ID: 16579574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Sensitive Strain Sensor Based on a Novel Mach-Zehnder Interferometer with TCF-PCF Structure.
    Dong X; Du H; Luo Z; Duan J
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29346296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrabroadband polarization splitter based on three-core photonic crystal fiber with a modulation core.
    Zhao T; Lou S; Wang X; Zhou M; Lian Z
    Appl Opt; 2016 Aug; 55(23):6428-34. PubMed ID: 27534489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Intensity-Demodulated Fiber-Optic Magnetometer Based on Nanostructured Magnetic Fluid-Filled Fluidic Photonic Crystal Fibers.
    Zhu L; Wang H; Lin Q; Yao K; Xian D; Yang P; Zhao N; Tian B; Jiang Z
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38276739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a system for laser splicing photonic crystal fiber.
    Chong JH; Rao M
    Opt Express; 2003 Jun; 11(12):1365-70. PubMed ID: 19466006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic arc discharge technology for inscribing long period fiber gratings.
    Yin G; Tang J; Liao C; Wang Y
    Appl Opt; 2016 May; 55(14):3873-8. PubMed ID: 27168306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core.
    Zou L; Bao X; Chen L
    Opt Lett; 2003 Nov; 28(21):2022-4. PubMed ID: 14587802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.