These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 18545444)

  • 1. Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method.
    Mohammadi A; Jalali T; Agio M
    Opt Express; 2008 May; 16(10):7397-406. PubMed ID: 18545444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modular implementation of dispersive materials for time-domain simulations with application to gold nanospheres at optical frequencies.
    Baumann D; Fumeaux C; Hafner C; Li EP
    Opt Express; 2009 Aug; 17(17):15186-200. PubMed ID: 19687997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation of multiple dipole surface plasmon resonances in spherical silver nanoparticles.
    Niesen B; Rand BP; Van Dorpe P; Shen H; Maes B; Genoe J; Heremans P
    Opt Express; 2010 Aug; 18(18):19032-8. PubMed ID: 20940797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersive contour-path finite-difference time-domain algorithm for modeling surface plasmon polaritons at flat interfaces.
    Mohammadi A; Agio M
    Opt Express; 2006 Nov; 14(23):11330-8. PubMed ID: 19529550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes.
    Kim KH; Husakou A; Herrmann J
    Opt Express; 2010 Mar; 18(7):7488-96. PubMed ID: 20389771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance.
    Ma WY; Yao J; Yang H; Liu JY; Li F; Hilton JP; Lin Q
    Opt Express; 2009 Aug; 17(17):14967-76. PubMed ID: 19687975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal scaling of the figure of merit of plasmonic sensors.
    Offermans P; Schaafsma MC; Rodriguez SR; Zhang Y; Crego-Calama M; Brongersma SH; Gómez Rivas J
    ACS Nano; 2011 Jun; 5(6):5151-7. PubMed ID: 21574624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A level-set procedure for the design of electromagnetic metamaterials.
    Zhou S; Li W; Sun G; Li Q
    Opt Express; 2010 Mar; 18(7):6693-702. PubMed ID: 20389692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical response of linear chains of metal nanospheres and nanospheroids.
    Norton SJ; Vo-Dinh T
    J Opt Soc Am A Opt Image Sci Vis; 2008 Nov; 25(11):2767-75. PubMed ID: 18978855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic wave propagation in a Ag nanoparticle-based plasmonic power divider.
    Ahmed I; Png CE; Li EP; Vahldieck R
    Opt Express; 2009 Jan; 17(1):337-45. PubMed ID: 19129902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic ray tracing model for line structures.
    Tan CB; Khoh A; Yeo SH
    Opt Express; 2008 Mar; 16(6):3589-603. PubMed ID: 18542452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant mode coupling of optical resonances in stacked nanostructures.
    Gippius NA; Weiss T; Tikhodeev SG; Giessen H
    Opt Express; 2010 Mar; 18(7):7569-74. PubMed ID: 20389778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combination of concave/convex surfaces for field-enhancement optimization: the indented nanocone.
    García-Etxarri A; Apell P; Käll M; Aizpurua J
    Opt Express; 2012 Nov; 20(23):25201-12. PubMed ID: 23187337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of FDTD mode solver by high-performance computing techniques.
    Han L; Xi Y; Huang WP
    Opt Express; 2010 Jun; 18(13):13679-92. PubMed ID: 20588502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting.
    Nishijima Y; Rosa L; Juodkazis S
    Opt Express; 2012 May; 20(10):11466-77. PubMed ID: 22565766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Description of van der Waals interactions using transformation optics.
    Zhao R; Luo Y; Fernández-Domínguez AI; Pendry JB
    Phys Rev Lett; 2013 Jul; 111(3):033602. PubMed ID: 23909317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.
    Butet J; Bachelier G; Duboisset J; Bertorelle F; Russier-Antoine I; Jonin C; Benichou E; Brevet PF
    Opt Express; 2010 Oct; 18(21):22314-23. PubMed ID: 20941132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and design of nano-plasmonic structures using transmission line modeling.
    Ahmed OS; Swillam MA; Bakr MH; Li X
    Opt Express; 2010 Oct; 18(21):21784-97. PubMed ID: 20941079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.