BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18545450)

  • 1. Nanoscale depth resolution in scanning near-field infrared microscopy.
    Wollny G; Bründermann E; Arsov Z; Quaroni L; Havenith M
    Opt Express; 2008 May; 16(10):7453-9. PubMed ID: 18545450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale subsurface- and material-specific identification of single nanoparticles.
    Nuño Z; Hessler B; Ochoa J; Shon YS; Bonney C; Abate Y
    Opt Express; 2011 Oct; 19(21):20865-75. PubMed ID: 21997096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study.
    Nussio MR; Oncins G; Ridelis I; Szili E; Shapter JG; Sanz F; Voelcker NH
    J Phys Chem B; 2009 Jul; 113(30):10339-47. PubMed ID: 19572625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy study of thick lamellar stacks of phospholipid bilayers.
    Schäfer A; Salditt T; Rheinstädter MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021905. PubMed ID: 18352049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale analysis of supported lipid bilayers using atomic force microscopy.
    El Kirat K; Morandat S; Dufrêne YF
    Biochim Biophys Acta; 2010 Apr; 1798(4):750-65. PubMed ID: 19664999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry.
    Richter RP; Brisson AR
    Biophys J; 2005 May; 88(5):3422-33. PubMed ID: 15731391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon.
    Samson JS; Wollny G; Bründermann E; Bergner A; Hecker A; Schwaab G; Wieck AD; Havenith M
    Phys Chem Chem Phys; 2006 Feb; 8(6):753-8. PubMed ID: 16482316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning near-field IR microscopy of proteins in lipid bilayers.
    Ballout F; Krassen H; Kopf I; Ataka K; Bründermann E; Heberle J; Havenith M
    Phys Chem Chem Phys; 2011 Dec; 13(48):21432-6. PubMed ID: 22048276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.
    Stiegler JM; Abate Y; Cvitkovic A; Romanyuk YE; Huber AJ; Leone SR; Hillenbrand R
    ACS Nano; 2011 Aug; 5(8):6494-9. PubMed ID: 21770439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and dynamics of supported phospholipid membranes on a periodic nanotextured substrate.
    Werner JH; Montaño GA; Garcia AL; Zurek NA; Akhadov EA; Lopez GP; Shreve AP
    Langmuir; 2009 Mar; 25(5):2986-93. PubMed ID: 19437708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin spin-coated dioleoylphosphatidylcholine lipid layers in dry conditions: a combined atomic force microscopy and nanomechanical study.
    Dols-Perez A; Fumagalli L; Simonsen AC; Gomila G
    Langmuir; 2011 Nov; 27(21):13165-72. PubMed ID: 21936555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon.
    Rodríguez-Cantó PJ; Martínez-Marco M; Rodríguez-Fortuño FJ; Tomás-Navarro B; Ortuño R; Peransí-Llopis S; Martínez A
    Opt Express; 2011 Apr; 19(8):7664-72. PubMed ID: 21503075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imprinting the optical near field of microstructures with nanometer resolution.
    Kühler P; García de Abajo FJ; Solis J; Mosbacher M; Leiderer P; Afonso CN; Siegel J
    Small; 2009 Aug; 5(16):1825-9. PubMed ID: 19618427
    [No Abstract]   [Full Text] [Related]  

  • 14. Supported lipid bilayers as effective substrates for atomic force microscopy.
    Czajkowsky DM; Shao Z
    Methods Cell Biol; 2002; 68():231-41. PubMed ID: 12053732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive nanoscale embedding of functional nanoparticles on silicon surface.
    Cavallini M; Simeone FC; Borgatti F; Albonetti C; Morandi V; Sangregorio C; Innocenti C; Pineider F; Annese E; Panaccione G; Pasquali L
    Nanoscale; 2010 Oct; 2(10):2069-72. PubMed ID: 20697613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale mechanical probing of supported lipid bilayers with atomic force microscopy.
    Das C; Sheikh KH; Olmsted PD; Connell SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041920. PubMed ID: 21230326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embedding and self-organization of nanoparticles in phospholipid multilayers.
    Terheiden A; Rellinghaus B; Stappert S; Acet M; Mayer C
    J Chem Phys; 2004 Jul; 121(1):510-6. PubMed ID: 15260572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale patterning of alkyl monolayers on silicon using the atomic force microscope.
    Headrick JE; Armstrong M; Cratty J; Hammond S; Sheriff BA; Berrie CL
    Langmuir; 2005 Apr; 21(9):4117-22. PubMed ID: 15835982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy.
    Garcia-Manyes S; Oncins G; Sanz F
    Biophys J; 2005 Sep; 89(3):1812-26. PubMed ID: 15980180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Materials science of the gel to fluid phase transition in a supported phospholipid bilayer.
    Xie AF; Yamada R; Gewirth AA; Granick S
    Phys Rev Lett; 2002 Dec; 89(24):246103. PubMed ID: 12484960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.