These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Plasmonic Metamaterials for Nanochemistry and Sensing. Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511 [TBL] [Abstract][Full Text] [Related]
4. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate. Harrison RK; Ben-Yakar A Opt Express; 2010 Oct; 18(21):22556-71. PubMed ID: 20941153 [TBL] [Abstract][Full Text] [Related]
10. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: comment. Boulais E; Robitaille A; Desjeans-Gauthier P; Meunier M Opt Express; 2011 Mar; 19(7):6177-8; discussion 6179-81. PubMed ID: 21451642 [TBL] [Abstract][Full Text] [Related]
11. Universal scaling of the figure of merit of plasmonic sensors. Offermans P; Schaafsma MC; Rodriguez SR; Zhang Y; Crego-Calama M; Brongersma SH; Gómez Rivas J ACS Nano; 2011 Jun; 5(6):5151-7. PubMed ID: 21574624 [TBL] [Abstract][Full Text] [Related]
12. Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation. Pang Z; Zhang X Nanotechnology; 2011 Apr; 22(14):145303. PubMed ID: 21346302 [TBL] [Abstract][Full Text] [Related]
13. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Liu Q; Cui Y; Gardner D; Li X; He S; Smalyukh II Nano Lett; 2010 Apr; 10(4):1347-53. PubMed ID: 20334353 [TBL] [Abstract][Full Text] [Related]
14. Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes. Chiu CH; Yu P; Chang CH; Yang CS; Hsu MH; Kuo HC; Tsai MA Opt Express; 2009 Nov; 17(23):21250-6. PubMed ID: 19997364 [TBL] [Abstract][Full Text] [Related]
15. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity. Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812 [TBL] [Abstract][Full Text] [Related]
16. Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes. Weber D; Albella P; Alonso-González P; Neubrech F; Gui H; Nagao T; Hillenbrand R; Aizpurua J; Pucci A Opt Express; 2011 Aug; 19(16):15047-61. PubMed ID: 21934866 [TBL] [Abstract][Full Text] [Related]
17. Atomic-scale confinement of resonant optical fields. Kern J; Grossmann S; Tarakina NV; Häckel T; Emmerling M; Kamp M; Huang JS; Biagioni P; Prangsma JC; Hecht B Nano Lett; 2012 Nov; 12(11):5504-9. PubMed ID: 22984927 [TBL] [Abstract][Full Text] [Related]
18. Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. Chen WT; Chen CJ; Wu PC; Sun S; Zhou L; Guo GY; Hsiao CT; Yang KY; Zheludev NI; Tsai DP Opt Express; 2011 Jun; 19(13):12837-42. PubMed ID: 21716526 [TBL] [Abstract][Full Text] [Related]
19. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Maier SA; Kik PG; Atwater HA; Meltzer S; Harel E; Koel BE; Requicha AA Nat Mater; 2003 Apr; 2(4):229-32. PubMed ID: 12690394 [TBL] [Abstract][Full Text] [Related]
20. Effect of orientation on plasmonic coupling between gold nanorods. Tabor C; Van Haute D; El-Sayed MA ACS Nano; 2009 Nov; 3(11):3670-8. PubMed ID: 19891438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]