These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18545572)

  • 1. A comparative study of living cell micromechanical properties by oscillatory optical tweezers.
    Wei MT; Zaorski A; Yalcin HC; Wang J; Ghadiali SN; Chiou A; Ou-Yang HD
    Opt Express; 2008 Jun; 16(12):8594-603. PubMed ID: 18545572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thrombin and histamine induce stiffening of alveolar epithelial cells.
    Trepat X; Grabulosa M; Buscemi L; Rico F; Farré R; Navajas D
    J Appl Physiol (1985); 2005 Apr; 98(4):1567-74. PubMed ID: 15557012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell stiffening in response to external stress is correlated to actin recruitment.
    Icard-Arcizet D; Cardoso O; Richert A; Hénon S
    Biophys J; 2008 Apr; 94(7):2906-13. PubMed ID: 18178644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment.
    Honarmandi P; Lee H; Lang MJ; Kamm RD
    Lab Chip; 2011 Feb; 11(4):684-94. PubMed ID: 21152510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping intracellular mechanics on micropatterned substrates.
    Mandal K; Asnacios A; Goud B; Manneville JB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7159-E7168. PubMed ID: 27799529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing mechanical properties of Jurkat cells under the effect of ART using oscillating optical tweezers.
    Khakshour S; Beischlag TV; Sparrey C; Park EJ
    PLoS One; 2015; 10(4):e0126548. PubMed ID: 25928073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. See-saw rocking: an in vitro model for mechanotransduction research.
    Tucker RP; Henningsson P; Franklin SL; Chen D; Ventikos Y; Bomphrey RJ; Thompson MS
    J R Soc Interface; 2014 Aug; 11(97):20140330. PubMed ID: 24898022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular viscoelasticity probed by active rheology in optical tweezers.
    Lyubin EV; Khokhlova MD; Skryabina MN; Fedyanin AA
    J Biomed Opt; 2012 Oct; 17(10):101510. PubMed ID: 23223986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and application of an oscillatory compression device for cell constructs.
    Cassino TR; Anderson R; Love BJ; Huckle WR; Seamans DK; Forsten-Williams K
    Biotechnol Bioeng; 2007 Sep; 98(1):211-20. PubMed ID: 17657777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human corneal epithelial cell response to substrate stiffness.
    Molladavoodi S; Kwon HJ; Medley J; Gorbet M
    Acta Biomater; 2015 Jan; 11():324-32. PubMed ID: 25305512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size- and speed-dependent mechanical behavior in living mammalian cytoplasm.
    Hu J; Jafari S; Han Y; Grodzinsky AJ; Cai S; Guo M
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9529-9534. PubMed ID: 28827333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring electrical and mechanical properties of red blood cells with double optical tweezers.
    Fontes A; Fernandes HP; de Thomaz AA; Barbosa LC; Barjas-Castro ML; Cesar CL
    J Biomed Opt; 2008; 13(1):014001. PubMed ID: 18315359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring cell and tissue mechanics with optical tweezers.
    Català-Castro F; Schäffer E; Krieg M
    J Cell Sci; 2022 Aug; 135(15):. PubMed ID: 35942913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam.
    Michihata M; Hayashi T; Takaya Y
    Appl Opt; 2009 Nov; 48(32):6143-51. PubMed ID: 19904310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power laws in microrheology experiments on living cells: Comparative analysis and modeling.
    Balland M; Desprat N; Icard D; Féréol S; Asnacios A; Browaeys J; Hénon S; Gallet F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021911. PubMed ID: 17025476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical modeling of red blood cells during optical stretching.
    Tan Y; Sun D; Huang W
    J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers.
    Laurent VM; Hénon S; Planus E; Fodil R; Balland M; Isabey D; Gallet F
    J Biomech Eng; 2002 Aug; 124(4):408-21. PubMed ID: 12188207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological characterization of composites using a vertical oscillation rheometer.
    Lee IB; Cho BH; Son HH; Um CM
    Dent Mater; 2007 Apr; 23(4):425-32. PubMed ID: 16566997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.