These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18545655)

  • 1. MemBrain: improving the accuracy of predicting transmembrane helices.
    Shen H; Chou JJ
    PLoS One; 2008 Jun; 3(6):e2399. PubMed ID: 18545655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction.
    Yin X; Yang J; Xiao F; Yang Y; Shen HB
    Nanomicro Lett; 2018; 10(1):2. PubMed ID: 30393651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MemBrain-contact 2.0: a new two-stage machine learning model for the prediction enhancement of transmembrane protein residue contacts in the full chain.
    Yang J; Shen HB
    Bioinformatics; 2018 Jan; 34(2):230-238. PubMed ID: 28968641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Prediction of Transmembrane β-Barrel Segments with Chain Learning and Feature Sparse Representation.
    Yin X; Xu YY; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1016-1026. PubMed ID: 26887010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charged residues next to transmembrane regions revisited: "Positive-inside rule" is complemented by the "negative inside depletion/outside enrichment rule".
    Baker JA; Wong WC; Eisenhaber B; Warwicker J; Eisenhaber F
    BMC Biol; 2017 Jul; 15(1):66. PubMed ID: 28738801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TMSEG: Novel prediction of transmembrane helices.
    Bernhofer M; Kloppmann E; Reeb J; Rost B
    Proteins; 2016 Nov; 84(11):1706-1716. PubMed ID: 27566436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational differentiation of N-terminal signal peptides and transmembrane helices.
    Yuan Z; Davis MJ; Zhang F; Teasdale RD
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1278-83. PubMed ID: 14652012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal-3L: A 3-layer approach for predicting signal peptides.
    Shen HB; Chou KC
    Biochem Biophys Res Commun; 2007 Nov; 363(2):297-303. PubMed ID: 17880924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving transmembrane protein consensus topology prediction using inter-helical interaction.
    Wang H; Zhang C; Shi X; Zhang L; Zhou Y
    Biochim Biophys Acta; 2012 Nov; 1818(11):2679-86. PubMed ID: 22683598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling.
    Yang J; Jang R; Zhang Y; Shen HB
    Bioinformatics; 2013 Oct; 29(20):2579-87. PubMed ID: 23946502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SOMPNN: an efficient non-parametric model for predicting transmembrane helices.
    Yu DJ; Shen HB; Yang JY
    Amino Acids; 2012 Jun; 42(6):2195-205. PubMed ID: 21695537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method.
    Zhou H; Zhou Y
    Protein Sci; 2003 Jul; 12(7):1547-55. PubMed ID: 12824500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembrane protein topology prediction using support vector machines.
    Nugent T; Jones DT
    BMC Bioinformatics; 2009 May; 10():159. PubMed ID: 19470175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
    Park Y; Helms V
    Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large tilts in transmembrane helices can be induced during tertiary structure formation.
    Virkki M; Boekel C; Illergård K; Peters C; Shu N; Tsirigos KD; Elofsson A; von Heijne G; Nilsson I
    J Mol Biol; 2014 Jun; 426(13):2529-38. PubMed ID: 24793448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2007 Aug; 360(2):339-45. PubMed ID: 17586467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
    Cao B; Porollo A; Adamczak R; Jarrell M; Meller J
    Bioinformatics; 2006 Feb; 22(3):303-9. PubMed ID: 16293670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.