BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 18546176)

  • 21. Development of a differential interference contrast thermal lens microscope for sensitive individual nanoparticle detection in liquid.
    Shimizu H; Mawatari K; Kitamori T
    Anal Chem; 2009 Dec; 81(23):9802-6. PubMed ID: 19894703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Process analytical chemistry.
    Workman J; Koch M; Lavine B; Chrisman R
    Anal Chem; 2009 Jun; 81(12):4623-43. PubMed ID: 19425531
    [No Abstract]   [Full Text] [Related]  

  • 23. Micro wet analysis system using multi-phase laminar flows in three-dimensional microchannel network.
    Kikutani Y; Hisamoto H; Tokeshi M; Kitamori T
    Lab Chip; 2004 Aug; 4(4):328-32. PubMed ID: 15269799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Progress and Applications of Thermal Lens Spectrometry and Photothermal Beam Deflection Techniques in Environmental Sensing.
    Franko M; Goljat L; Liu M; Budasheva H; Žorž Furlan M; Korte D
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scaling and the design of miniaturized chemical-analysis systems.
    Janasek D; Franzke J; Manz A
    Nature; 2006 Jul; 442(7101):374-80. PubMed ID: 16871204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement.
    Estupiñán-López C; Tolentino Dominguez C; de Araujo RE
    Opt Express; 2013 Jul; 21(15):18592-601. PubMed ID: 23938731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Optical Configuration of Crossed-Beam Photothermal Lens Spectrometer Operating at High Flow Velocities and Its Application for Cysteine Determination in Human Serum and Saliva.
    Yoosefian J; Alizadeh N
    Anal Chem; 2018 Jul; 90(13):8227-8233. PubMed ID: 29869876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the mixing efficiency of a chaotic micromixer using thermal lens spectrometry.
    Ghaleb KA; Stephan K; Pittet P; Ferrigno R; Georges J
    Appl Spectrosc; 2006 May; 60(5):564-7. PubMed ID: 16756709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic micro-TAS devices.
    Hsu YC; Chen TY
    Biomed Microdevices; 2007 Aug; 9(4):513-22. PubMed ID: 17516175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Label-free detection of amino acids using gold nanoparticles in electrokinetic chromatography-thermal lens microscopy.
    Kitagawa F; Akimoto Y; Otsuka K
    J Chromatogr A; 2009 Apr; 1216(14):2943-6. PubMed ID: 18723173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous-wave-laser versus pulsed-laser excitation for crossed-beam photothermal detection in small volume applications: comparative features.
    Georges J
    Appl Spectrosc; 2005 Sep; 59(9):1103-8. PubMed ID: 18028608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment.
    Wu MH; Lin JL; Wang J; Cui Z; Cui Z
    Biomed Microdevices; 2009 Feb; 11(1):265-73. PubMed ID: 18830696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization.
    Malacarne LC; Astrath NG; Lukasievicz GV; Lenzi EK; Baesso ML; Bialkowski SE
    Appl Spectrosc; 2011 Jan; 65(1):99-104. PubMed ID: 21211159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling and optimization of micro optofluidic lenses.
    Song C; Nguyen NT; Tan SH; Asundi AK
    Lab Chip; 2009 May; 9(9):1178-84. PubMed ID: 19370234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A monolithic photonic microcantilever device for in situ monitoring of volatile compounds.
    Misiakos K; Raptis I; Gerardino A; Contopanagos H; Kitsara M
    Lab Chip; 2009 May; 9(9):1261-6. PubMed ID: 19370246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reflectometric interference spectroscopy.
    Proll G; Markovic G; Steinle L; Gauglitz G
    Methods Mol Biol; 2009; 503():167-78. PubMed ID: 19151940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy.
    Le TH; Mawatari K; Shimizu H; Kitamori T
    Analyst; 2014 Jun; 139(11):2721-5. PubMed ID: 24759977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remote temperature measurements in femto-liter volumes using dual-focus-Fluorescence Correlation Spectroscopy.
    Müller CB; Weiss K; Loman A; Enderlein J; Richtering W
    Lab Chip; 2009 May; 9(9):1248-53. PubMed ID: 19370244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of nonfluorescent molecules using differential interference contrast thermal lens microscope for extended nanochannel chromatography.
    Shimizu H; Mawatari K; Kitamori T
    J Sep Sci; 2011 Oct; 34(20):2920-4. PubMed ID: 21826792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.