BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18546275)

  • 1. Postnatal reorganization of primary afferent terminal fields in the rat gustatory brainstem is determined by prenatal dietary history.
    Mangold JE; Hill DL
    J Comp Neurol; 2008 Aug; 509(6):594-607. PubMed ID: 18546275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive reorganization of primary afferent projections into the gustatory brainstem induced by feeding a sodium-restricted diet during development: less is more.
    Mangold JE; Hill DL
    J Neurosci; 2007 Apr; 27(17):4650-62. PubMed ID: 17460078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gustatory terminal field organization and developmental plasticity in the nucleus of the solitary tract revealed through triple-fluorescence labeling.
    May OL; Hill DL
    J Comp Neurol; 2006 Aug; 497(4):658-69. PubMed ID: 16739199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifications of gustatory nerve synapses onto nucleus of the solitary tract neurons induced by dietary sodium-restriction during development.
    May OL; Erisir A; Hill DL
    J Comp Neurol; 2008 Jun; 508(4):529-41. PubMed ID: 18366062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of dietary protein restriction on chorda tympani nerve taste responses and terminal field organization.
    Thomas JE; Hill DL
    Neuroscience; 2008 Nov; 157(2):329-39. PubMed ID: 18845228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early prenatal critical period for chorda tympani nerve terminal field development.
    Krimm RF; Hill DL
    J Comp Neurol; 1997 Feb; 378(2):254-64. PubMed ID: 9120064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chorda tympani nerve terminal field maturation and maintenance is severely altered following changes to gustatory nerve input to the nucleus of the solitary tract.
    Corson SL; Hill DL
    J Neurosci; 2011 May; 31(21):7591-603. PubMed ID: 21613473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary sodium chloride deprivation throughout development selectively influences the terminal field organization of gustatory afferent fibers projecting to the rat nucleus of the solitary tract.
    King CT; Hill DL
    J Comp Neurol; 1991 Jan; 303(1):159-69. PubMed ID: 2005238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related decrease of the chorda tympani nerve terminal field in the nucleus of the solitary tract is prevented by dietary sodium restriction during development.
    Sollars SI; Walker BR; Thaw AK; Hill DL
    Neuroscience; 2006; 137(4):1229-36. PubMed ID: 16338076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.
    Sun C; Hummler E; Hill DL
    J Neurosci; 2017 Jan; 37(3):660-672. PubMed ID: 28100747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood.
    Skyberg R; Sun C; Hill DL
    J Neurosci; 2017 Aug; 37(32):7619-7630. PubMed ID: 28676575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental sodium restriction and gustatory afferent terminal field organization in the parabrachial nucleus.
    Walker BR; Hill DL
    Physiol Behav; 1998 May; 64(2):173-8. PubMed ID: 9662082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regenerative Failure Following Rat Neonatal Chorda Tympani Transection is Associated with Geniculate Ganglion Cell Loss and Terminal Field Plasticity in the Nucleus of the Solitary Tract.
    Martin LJ; Lane AH; Samson KK; Sollars SI
    Neuroscience; 2019 Mar; 402():66-77. PubMed ID: 30684590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A survey of oral cavity afferents to the rat nucleus tractus solitarii.
    Corson J; Aldridge A; Wilmoth K; Erisir A
    J Comp Neurol; 2012 Feb; 520(3):495-527. PubMed ID: 21800298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal development of chorda tympani axons in the rat nucleus of the solitary tract.
    Wang S; Corson J; Hill D; Erisir A
    J Comp Neurol; 2012 Oct; 520(14):3217-35. PubMed ID: 22430892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered taste responses in adult NST after neonatal chorda tympani denervation.
    Dinkins ME; Travers SP
    J Neurophysiol; 1999 Nov; 82(5):2565-78. PubMed ID: 10561427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroanatomical alterations in the rat nucleus of the solitary tract following early maternal NaCl deprivation and subsequent NaCl repletion.
    King CT; Hill DL
    J Comp Neurol; 1993 Jul; 333(4):531-42. PubMed ID: 8370815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal development of gustatory recipient zones within the nucleus of the solitary tract.
    Lasiter PS
    Brain Res Bull; 1992 May; 28(5):667-77. PubMed ID: 1617454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of early postnatal receptor damage on development of gustatory recipient zones within the nucleus of the solitary tract.
    Lasiter PS; Kachele DL
    Brain Res Dev Brain Res; 1990 Aug; 55(1):57-71. PubMed ID: 2208641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructure of primary afferent terminals and synapses in the rat nucleus of the solitary tract: comparison among the greater superficial petrosal, chorda tympani, and glossopharyngeal nerves.
    May OL; Erisir A; Hill DL
    J Comp Neurol; 2007 Jun; 502(6):1066-78. PubMed ID: 17444498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.