These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 18546302)

  • 1. Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsan.
    Zosim Z; Gutnick D; Rosenberg E
    Biotechnol Bioeng; 1982 Feb; 24(2):281-92. PubMed ID: 18546302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uranium binding by emulsan and emulsanosols.
    Zosim Z; Gutnick D; Rosenberg E
    Biotechnol Bioeng; 1983 Jul; 25(7):1725-35. PubMed ID: 18551477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific binding of a bacteriophage at a hydrocarbon-water interface.
    Pines O; Gutnick D
    J Bacteriol; 1984 Jan; 157(1):179-83. PubMed ID: 6546308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel polysaccharide-protein-based amphipathic formulations.
    Bach H; Gutnick DL
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):34-8. PubMed ID: 16172888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrocarbon degradation by Acinetobacter calcoaceticus RAG-1 using the self-cycling fermentation technique.
    Brown WA; Cooper DG
    Biotechnol Bioeng; 1992 Oct; 40(7):797-805. PubMed ID: 18601183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An exocellular protein from the oil-degrading microbe Acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan.
    Bach H; Berdichevsky Y; Gutnick D
    Appl Environ Microbiol; 2003 May; 69(5):2608-15. PubMed ID: 12732528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B.
    Knudsen JC; Ă˜gendal LH; Skibsted LH
    Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of oil polarity on droplet growth in oil-in-water emulsions stabilized by a weakly adsorbing biopolymer or a nonionic surfactant.
    Chanamai R; Horn G; McClements DJ
    J Colloid Interface Sci; 2002 Mar; 247(1):167-76. PubMed ID: 16290453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic bacteria at the hexadecane-water interface: examination of micrometre-scale interfacial properties.
    Kang Z; Yeung A; Foght JM; Gray MR
    Colloids Surf B Biointerfaces; 2008 Nov; 67(1):59-66. PubMed ID: 18778923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of molecular weight and degree of deacetylation of chitosan on the formation of oil-in-water emulsions stabilized by surfactant-chitosan membranes.
    Mun S; Decker EA; McClements DJ
    J Colloid Interface Sci; 2006 Apr; 296(2):581-90. PubMed ID: 16203009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of the apolar phase influences the structure of the protein emulsifier in oil-in-water emulsions stabilized by bovine serum albumin. A front-surface fluorescence study.
    Rampon V; Brossard C; Mouhous-Riou N; Bousseau B; Llamas G; Genot C
    Adv Colloid Interface Sci; 2004 May; 108-109():87-94. PubMed ID: 15072931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of protein concentration and order of addition on thermal stability of beta-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2005 Jan; 21(1):134-9. PubMed ID: 15620294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of gum Arabic, egg white protein, and their mixtures at the oil-water interface in limonene oil-in-water emulsions.
    Padala SR; Williams PA; Phillips GO
    J Agric Food Chem; 2009 Jun; 57(11):4964-73. PubMed ID: 19422219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of a protein tyrosine kinase in production of the polymeric bioemulsifier emulsan from the oil-degrading strain Acinetobacter lwoffii RAG-1.
    Nakar D; Gutnick DL
    J Bacteriol; 2003 Feb; 185(3):1001-9. PubMed ID: 12533476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan.
    Rosenberg E; Gottlieb A; Rosenberg M
    Infect Immun; 1983 Mar; 39(3):1024-8. PubMed ID: 6341225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oilfield solids and water-in-oil emulsion stability.
    Sztukowski DM; Yarranton HW
    J Colloid Interface Sci; 2005 May; 285(2):821-33. PubMed ID: 15837502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of high internal phase aqueous-in-oil emulsions and related inverse micelle solutions. 3. Variation of surfactant.
    Reynolds PA; Gilbert EP; Henderson MJ; White JW
    J Phys Chem B; 2009 Sep; 113(36):12231-42. PubMed ID: 19681586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of interfacial characteristics on Ostwald ripening in hydrocarbon oil-in-water emulsions.
    Mun S; McClements DJ
    Langmuir; 2006 Feb; 22(4):1551-4. PubMed ID: 16460073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous Emulsification of Oils Containing Hydrocarbon, Nonionic Surfactant, and Oleyl Alcohol.
    Rang MJ; Miller CA
    J Colloid Interface Sci; 1999 Jan; 209(1):179-192. PubMed ID: 9878151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.