These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 18546400)

  • 1. Analysis and optimization of methods using water-soluble carbodiimide for immobilization of biochemicals to porous glass.
    Janolino VG; Swaisgood HE
    Biotechnol Bioeng; 1982 May; 24(5):1069-80. PubMed ID: 18546400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of thionyl chloride-activated succinamidopropyl-glass as a covalent immobilization matrix.
    DuVal G; Swaisgood HE; Horton HR
    J Appl Biochem; 1984 Aug; 6(4):240-50. PubMed ID: 6520073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutrase immobilization on alginate-glutaraldehyde beads by covalent attachment.
    Ortega N; Perez-Mateos M; Pilar MC; Busto MD
    J Agric Food Chem; 2009 Jan; 57(1):109-15. PubMed ID: 19061308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-IgG immobilized controlled-pore glass. Thionyl chloride-activated succinamidopropyl-glass as a covalent immobilization matrix.
    Stabel TJ; Casale ES; Swaisgood HE; Horton HR
    Appl Biochem Biotechnol; 1992 Aug; 36(2):87-96. PubMed ID: 1359836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein immobilization to alumina supports: II. Papain immobilization to alumina via organophosphate linkers.
    Hyndman D; Burrell R; Lever G; Flynn TG
    Biotechnol Bioeng; 1992 Dec; 40(11):1328-36. PubMed ID: 18601088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative investigation of methods for protein immobilization on self-assembled monolayers using glutaraldehyde, carbodiimide, and anhydride reagents.
    Ducker RE; Montague MT; Leggett GJ
    Biointerphases; 2008 Sep; 3(3):59-65. PubMed ID: 20408701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of amide formation through carbodiimide/N-hydroxybenzotriazole (HOBt) couplings.
    Chan LC; Cox BG
    J Org Chem; 2007 Nov; 72(23):8863-9. PubMed ID: 17929977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of cellulase on a reversibly soluble-insoluble support: properties and application.
    Zhou J
    J Agric Food Chem; 2010 Jun; 58(11):6741-6. PubMed ID: 20459124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of endo-polygalacturonase from Aspergillus niger on various types of macromolecular supports.
    Pifferi PG; Tramontini M; Malacarne A
    Biotechnol Bioeng; 1989 Apr; 33(10):1258-66. PubMed ID: 18587858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity.
    Pei Z; Anderson H; Myrskog A; Dunér G; Ingemarsson B; Aastrup T
    Anal Biochem; 2010 Mar; 398(2):161-8. PubMed ID: 19962366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A new approach to the problem of immobilizing oligonucleotides on carboxyl-containing nylon membranes for nucleic acid hybridization].
    Ivanovskaia MG; Kozlov IA; Naryshkin NA; Shabarova ZA
    Bioorg Khim; 1995 Jul; 21(7):535-8. PubMed ID: 7488269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemo-mechanical leak formation in human erythrocytes upon exposure to a water-soluble carbodiimide followed by very mild shear stress. II. Chemical modifications involved.
    Thelen P; Deuticke B
    Biochim Biophys Acta; 1988 Oct; 944(2):297-307. PubMed ID: 3179292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein hydrolysis by immobilized and stabilized trypsin.
    Marques D; Pessela BC; Betancor L; Monti R; Carrascosa AV; Rocha-Martin J; Guisán JM; Fernandez-Lorente G
    Biotechnol Prog; 2011; 27(3):677-83. PubMed ID: 21509952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester.
    Yilmaz E; Can K; Sezgin M; Yilmaz M
    Bioresour Technol; 2011 Jan; 102(2):499-506. PubMed ID: 20846857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of man-tailored cellulose-based carriers in glucoamylase immobilization.
    Bryjak J; Aniulyte J; Liesiene J
    Carbohydr Res; 2007 Jun; 342(8):1105-9. PubMed ID: 17359947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of proteins on organic polymer beads.
    Ampon K; Means GE
    Biotechnol Bioeng; 1988 Aug; 32(5):689-97. PubMed ID: 18587770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of lactate dehydrogenase on polyacrylamide beads.
    Kotormán M; Simon LM; Szajáni B; Boross L
    Biotechnol Appl Biochem; 1986 Feb; 8(1):53-9. PubMed ID: 3828081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of covalent and noncovalent immobilization of Malatya apricot pectinesterase (Prunus armeniaca L.).
    Karakuş E; Pekyardımcı S
    Artif Cells Blood Substit Immobil Biotechnol; 2012 Feb; 40(1-2):132-41. PubMed ID: 21951194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of trypsin onto 1,4-diisothiocyanatobenzene-activated porous glass for microreactor-based peptide mapping by capillary electrophoresis: effect of calcium ions on the immobilization procedure.
    Dartiguenave C; Hamad H; Waldron KC
    Anal Chim Acta; 2010 Mar; 663(2):198-205. PubMed ID: 20206011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple coupling chemistry linking carboxyl-containing organic molecules to silicon oxide surfaces under acidic conditions.
    Schmidt SW; Christ T; Glockner C; Beyer MK; Clausen-Schaumann H
    Langmuir; 2010 Oct; 26(19):15333-8. PubMed ID: 20822126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.