BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18546408)

  • 21. Conditions that promote production of lactic acid by Zymomonas mobilis in batch and continuous culture.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1998; 70-72():173-85. PubMed ID: 9627381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison between immobilized Kluyveromyces fragilis and Saccharomyces cerevisiae coimmobilized with beta-galactosidase, with respect to continuous ethanol production from concentrated whey permeate.
    Hahn-Hägerdal B
    Biotechnol Bioeng; 1985 Jun; 27(6):914-6. PubMed ID: 18553758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revitalizing the ethanologenic bacterium
    Hu M; Chen X; Huang J; Du J; Li M; Yang S
    Bioresour Bioprocess; 2021; 8(1):119. PubMed ID: 34873566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in response of Zymomonas mobilis and Saccharomyces cerevisiae to change in extracellular ethanol concentration.
    Hobley TJ; Pamment NB
    Biotechnol Bioeng; 1994 Jan; 43(2):155-8. PubMed ID: 18615609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell immobilization in kappa-carrageenan for ethanol production.
    Luong JH
    Biotechnol Bioeng; 1985 Dec; 27(12):1652-61. PubMed ID: 18553626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detrimental effect of increasing sugar concentrations on ethanol production from maize or decorticated sorghum mashes fermented with Saccharomyces cerevisiae or Zymomonas mobilis: biofuels and environmental biotechnology.
    Pérez-Carrillo E; Luisa Cortés-Callejas M; Sabillón-Galeas LE; Montalvo-Villarreal JL; Canizo JR; Georgina Moreno-Zepeda M; Serna-Saldivar SO
    Biotechnol Lett; 2011 Feb; 33(2):301-7. PubMed ID: 20972698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ethanol production by Kluyveromyces lactis immobilized cells in copolymer carriers produced by radiation polymerization.
    El-Batal AI; Farahat LM; El-Rehim HA
    Acta Microbiol Pol; 2000; 49(2):157-66. PubMed ID: 11093678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains.
    Masneuf-Pomarède I; Bely M; Marullo P; Lonvaud-Funel A; Dubourdieu D
    Int J Food Microbiol; 2010 Apr; 139(1-2):79-86. PubMed ID: 20188428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.
    Ou MS; Mohammed N; Ingram LO; Shanmugam KT
    Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor.
    Silva CR; Zangirolami TC; Rodrigues JP; Matugi K; Giordano RC; Giordano RL
    Enzyme Microb Technol; 2012 Jan; 50(1):35-42. PubMed ID: 22133438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ethanol production at elevated temperatures using encapsulation of yeast.
    Ylitervo P; Franzén CJ; Taherzadeh MJ
    J Biotechnol; 2011 Oct; 156(1):22-9. PubMed ID: 21807041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic analysis of calcium alginate-immobilized Saccharomyces cerevisiae under high-gravity fermentation conditions.
    Pham TK; Wright PC
    J Proteome Res; 2008 Feb; 7(2):515-25. PubMed ID: 18171021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous and static fermentation of glucose to ethanol by immobilized Saccharomyces cerevisiae cells of different ages.
    McGhee JE; St Julian G; Detroy RW
    Appl Environ Microbiol; 1982 Jul; 44(1):19-22. PubMed ID: 6751224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ethanol fermentation in a yeast immobilized tubular fermentor.
    Gencer MA; Mutharasan R
    Biotechnol Bioeng; 1983 Sep; 25(9):2243-62. PubMed ID: 18574819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae.
    Talebnia F; Taherzadeh MJ
    J Biotechnol; 2006 Sep; 125(3):377-84. PubMed ID: 16621080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ethanol fermentation technologies from sugar and starch feedstocks.
    Bai FW; Anderson WA; Moo-Young M
    Biotechnol Adv; 2008; 26(1):89-105. PubMed ID: 17964107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Continuous ethanol fermentation using self-flocculating yeast strain and bioreactor system composed of multi-stage tanks in series].
    Xu TJ; Zhao XQ; Zhou YC; Bai FW
    Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):113-7. PubMed ID: 15859339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties and application of immobilized beta-D-glucosidase coentrapped with Zymomonas mobilis in calcium alginate.
    Lee JM; Woodward J
    Biotechnol Bioeng; 1983 Oct; 25(10):2441-51. PubMed ID: 18548572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous ethanol production and cell growth in an immobilized-cell bioreactor employing Zymomonas mobilis.
    Arcuri EJ
    Biotechnol Bioeng; 1982 Mar; 24(3):595-604. PubMed ID: 18546350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of ethanol from starch by co-immobilized Zymomonas mobilis-glucoamylase in a fluidized-bed reactor.
    Sun MY; Nghiem NP; Davison BH; Webb OF; Bienkowski PR
    Appl Biochem Biotechnol; 1998; 70-72():429-39. PubMed ID: 18576011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.