These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 18546424)

  • 1. Shear disruption of soya protein precipitate particles and the effect of aging in a stirred tank.
    Bell DJ; Dunnill P
    Biotechnol Bioeng; 1982 Jun; 24(6):1271-85. PubMed ID: 18546424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of precipitation reactor configuration on the centrifugal recovery of isoelectric soya protein precipitate.
    Bell DJ; Dunnill P
    Biotechnol Bioeng; 1982 Nov; 24(11):2319-36. PubMed ID: 18546209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragmentation and erosion of two-dimensional aggregates in shear flow.
    Vassileva ND; van den Ende D; Mugele F; Mellema J
    Langmuir; 2007 Feb; 23(5):2352-61. PubMed ID: 17309199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank.
    Soos M; Moussa AS; Ehrl L; Sefcik J; Wu H; Morbidelli M
    J Colloid Interface Sci; 2008 Mar; 319(2):577-89. PubMed ID: 18164309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear-Induced Flocculation of Colloidal Particles in Stirred Tanks.
    Chin CJ; Yiacoumi S; Tsouris C
    J Colloid Interface Sci; 1998 Oct; 206(2):532-545. PubMed ID: 9756666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of different shear devices on flocculation.
    Serra T; Colomer J; Logan BE
    Water Res; 2008 Feb; 42(4-5):1113-21. PubMed ID: 17889250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental analysis of coagulation of particles under low-shear flow.
    Colomer J; Peters F; Marrasé C
    Water Res; 2005 Aug; 39(13):2994-3000. PubMed ID: 15996708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of Shear Rate Dependence on Restructuring and Breakup of Latex Aggregates.
    Selomulya C; Amal R; Bushell G; Waite TD
    J Colloid Interface Sci; 2001 Apr; 236(1):67-77. PubMed ID: 11254330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of aggregate strength, structure, and light scattering properties on primary particle size under turbulent conditions in stirred tank.
    Ehrl L; Soos M; Morbidelli M
    Langmuir; 2008 Apr; 24(7):3070-81. PubMed ID: 18302430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Simulation of the Breakup Process of Aggregates in Shear and Elongational Flows.
    Higashitani K; Iimura K
    J Colloid Interface Sci; 1998 Aug; 204(2):320-7. PubMed ID: 9698410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoelectric precipitation of soy protein. II. Kinetics of protein aggregate growth and breakage.
    Petenate AM; Glatz CE
    Biotechnol Bioeng; 1983 Dec; 25(12):3059-78. PubMed ID: 18548638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of mixing during acid addition on fractionally precipitated protein.
    Fisher RR; Glatz CE; Murphy PA
    Biotechnol Bioeng; 1986 Jul; 28(7):1056-63. PubMed ID: 18555427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of fragmentation behavior of colloidal aggregates on their fractal structure.
    Harada S; Tanaka R; Nogami H; Sawada M
    J Colloid Interface Sci; 2006 Sep; 301(1):123-9. PubMed ID: 16697393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The density of protein precipitates and its effect on centrifugal sedimentation.
    Bell DJ; Heywood-Waddington D; Hoare M; Dunnill P
    Biotechnol Bioeng; 1982 Jan; 24(1):127-41. PubMed ID: 18546105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restructuring and break-up of two-dimensional aggregates in shear flow.
    Vassileva ND; van den Ende D; Mugele F; Mellema J
    Langmuir; 2006 May; 22(11):4959-67. PubMed ID: 16700581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of shear on intramolecular and intermolecular association during cross-linking of hydroxyethylcellulose in dilute aqueous solutions.
    Maleki A; Kjøniksen AL; Nyström B
    J Phys Chem B; 2005 Jun; 109(25):12329-36. PubMed ID: 16852522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation behavior of latex particles in shear flow confined between two parallel plates.
    Kikuchi Y; Yamada H; Kunimori H; Tsukada T; Hozawa M; Yokoyama C; Kubo M
    Langmuir; 2005 Apr; 21(8):3273-8. PubMed ID: 15807564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the average shear rate in a stirred and aerated tank bioreactor.
    Campesi A; Cerri MO; Hokka CO; Badino AC
    Bioprocess Biosyst Eng; 2009 Feb; 32(2):241-8. PubMed ID: 18597122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for the acoustic conditioning of protein precipitates to improve their separation by centrifugation.
    Bell DJ; Dunnill P
    Biotechnol Bioeng; 1984 Jul; 26(7):691-8. PubMed ID: 18553433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid shear effects on suspension cultures of Morinda citrifolia.
    Kieran PM; O'Donnell HJ; Malone DM; MacLoughlin PF
    Biotechnol Bioeng; 1995 Mar; 45(5):415-25. PubMed ID: 18623234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.