BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18546477)

  • 1. Insights into the network controlling the G1/S transition in budding yeast.
    Barberis M; Klipp E
    Genome Inform; 2007; 18():85-99. PubMed ID: 18546477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of molecular noise and size control on variability in the budding yeast cell cycle.
    Di Talia S; Skotheim JM; Bean JM; Siggia ED; Cross FR
    Nature; 2007 Aug; 448(7156):947-51. PubMed ID: 17713537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of key factor controlling G1/S phase in the mammalian cell cycle using system analysis.
    Tashima Y; Hamada H; Okamoto M; Hanai T
    J Biosci Bioeng; 2008 Oct; 106(4):368-74. PubMed ID: 19000613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic modelling of DNA replication initiation in budding yeast.
    Barberis M; Spiesser TW; Klipp E
    Genome Inform; 2010; 24():1-20. PubMed ID: 22081585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Checkpoint regulation of DNA replication.
    Boye E; Skjølberg HC; Grallert B
    Methods Mol Biol; 2009; 521():55-70. PubMed ID: 19563101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling and sensitivity analysis of G1/S phase in the cell cycle including the DNA-damage signal transduction pathway.
    Iwamoto K; Tashima Y; Hamada H; Eguchi Y; Okamoto M
    Biosystems; 2008; 94(1-2):109-17. PubMed ID: 18606207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication dynamics of the yeast genome.
    Raghuraman MK; Winzeler EA; Collingwood D; Hunt S; Wodicka L; Conway A; Lockhart DJ; Davis RW; Brewer BJ; Fangman WL
    Science; 2001 Oct; 294(5540):115-21. PubMed ID: 11588253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell size at S phase initiation: an emergent property of the G1/S network.
    Barberis M; Klipp E; Vanoni M; Alberghina L
    PLoS Comput Biol; 2007 Apr; 3(4):e64. PubMed ID: 17432928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods to study replication fork collapse in budding yeast.
    Liberi G; Cotta-Ramusino C; Lopes M; Sogo J; Conti C; Bensimon A; Foiani M
    Methods Enzymol; 2006; 409():442-62. PubMed ID: 16793417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling cell growth and its modulation of the G1/S transition.
    Alarcón T; Tindall MJ
    Bull Math Biol; 2007 Jan; 69(1):197-214. PubMed ID: 17086369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular networks and system-level properties.
    Alberghina L; Höfer T; Vanoni M
    J Biotechnol; 2009 Nov; 144(3):224-33. PubMed ID: 19616593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Networks and circuits in cell regulation.
    Palumbo P; Mavelli G; Farina L; Alberghina L
    Biochem Biophys Res Commun; 2010 Jun; 396(4):881-6. PubMed ID: 20457126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Logical analysis of the budding yeast cell cycle.
    Irons DJ
    J Theor Biol; 2009 Apr; 257(4):543-59. PubMed ID: 19185585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the G1/S transition in plants.
    Rossi V; Varotto S
    Planta; 2002 Jul; 215(3):345-56. PubMed ID: 12111215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and modeling of growing budding yeast populations at the single cell level.
    Porro D; Vai M; Vanoni M; Alberghina L; Hatzis C
    Cytometry A; 2009 Feb; 75(2):114-20. PubMed ID: 19085920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication fork movement sets chromatin loop size and origin choice in mammalian cells.
    Courbet S; Gay S; Arnoult N; Wronka G; Anglana M; Brison O; Debatisse M
    Nature; 2008 Sep; 455(7212):557-60. PubMed ID: 18716622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA replication in the fission yeast: robustness in the face of uncertainty.
    Legouras I; Xouri G; Dimopoulos S; Lygeros J; Lygerou Z
    Yeast; 2006 Oct; 23(13):951-62. PubMed ID: 17072888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of Rho-type GTPase in control of cell size in Saccharomyces cerevisiae.
    Kikuchi Y; Mizuuchi E; Nogami S; Morishita S; Ohya Y
    FEMS Yeast Res; 2007 Jun; 7(4):569-78. PubMed ID: 17302939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing origin activation patterns by copy number change experiments.
    Raveendranathan M; Bielinsky AK
    Methods Mol Biol; 2009; 521():279-94. PubMed ID: 19563112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of origin recognition complex in saccharomyces cerevisiae by use of Degron mutants.
    Makise M; Matsui N; Yamairi F; Takahashi N; Takehara M; Asano T; Mizushima T
    J Biochem; 2008 Apr; 143(4):455-65. PubMed ID: 18211918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.