These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 18546497)
1. Analysis of common substructures of metabolic compounds within the different organism groups. Muto A; Hattori M; Kanehisa M Genome Inform; 2007; 18():299-307. PubMed ID: 18546497 [TBL] [Abstract][Full Text] [Related]
2. Extraction of phylogenetic network modules from prokayrote metabolic pathways. Yamada T; Goto S; Kanehisa M Genome Inform; 2004; 15(1):249-58. PubMed ID: 15712127 [TBL] [Abstract][Full Text] [Related]
3. Observing local and global properties of metabolic pathways: 'load points' and 'choke points' in the metabolic networks. Rahman SA; Schomburg D Bioinformatics; 2006 Jul; 22(14):1767-74. PubMed ID: 16682421 [TBL] [Abstract][Full Text] [Related]
4. Analysis of phenetic trees based on metabolic capabilites across the three domains of life. Aguilar D; Aviles FX; Querol E; Sternberg MJ J Mol Biol; 2004 Jul; 340(3):491-512. PubMed ID: 15210350 [TBL] [Abstract][Full Text] [Related]
5. Metabolic synergy: increasing biosynthetic capabilities by network cooperation. Christian N; Handorf T; Ebenhöh O Genome Inform; 2007; 18():320-9. PubMed ID: 18546499 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. Schilling CH; Palsson BO J Theor Biol; 2000 Apr; 203(3):249-83. PubMed ID: 10716908 [TBL] [Abstract][Full Text] [Related]
8. Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Schilling CH; Schuster S; Palsson BO; Heinrich R Biotechnol Prog; 1999; 15(3):296-303. PubMed ID: 10356246 [TBL] [Abstract][Full Text] [Related]
9. Extraction of organism groups from phylogenetic profiles using independent component analysis. Yamanishi Y; Itoh M; Kanehisa M Genome Inform; 2002; 13():61-70. PubMed ID: 14571375 [TBL] [Abstract][Full Text] [Related]
10. Reconstruction of phylogenetic relationships from metabolic pathways based on the enzyme hierarchy and the gene ontology. Clemente JC; Satou K; Valiente G Genome Inform; 2005; 16(2):45-55. PubMed ID: 16901088 [TBL] [Abstract][Full Text] [Related]
12. Analysis of a lipid biosynthesis protein family and phospholipid structural variations. Tanaka M; Moriya Y; Goto S; Kanehisa M Genome Inform; 2010 Jan; 22():191-201. PubMed ID: 20238429 [TBL] [Abstract][Full Text] [Related]
13. A cross species comparison of metabolic network functions. Ebenhöh O; Handorf T; Heinrich R Genome Inform; 2005; 16(1):203-13. PubMed ID: 16362923 [TBL] [Abstract][Full Text] [Related]
14. DESHARKY: automatic design of metabolic pathways for optimal cell growth. Rodrigo G; Carrera J; Prather KJ; Jaramillo A Bioinformatics; 2008 Nov; 24(21):2554-6. PubMed ID: 18776195 [TBL] [Abstract][Full Text] [Related]
15. Chemical variation within and among six northern willow species. Nyman T; Julkunen-Tiitto R Phytochemistry; 2005 Dec; 66(24):2836-43. PubMed ID: 16293274 [TBL] [Abstract][Full Text] [Related]
16. Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways. Oh M; Yamada T; Hattori M; Goto S; Kanehisa M J Chem Inf Model; 2007; 47(4):1702-12. PubMed ID: 17516640 [TBL] [Abstract][Full Text] [Related]
17. Pharmacologically active plant metabolites as survival strategy products. Attardo C; Sartori F Boll Chim Farm; 2003; 142(2):54-65. PubMed ID: 12705091 [TBL] [Abstract][Full Text] [Related]
18. Enzyme sequence similarity improves the reaction alignment method for cross-species pathway comparison. Ovacik MA; Androulakis IP Toxicol Appl Pharmacol; 2013 Sep; 271(3):363-71. PubMed ID: 20851138 [TBL] [Abstract][Full Text] [Related]
19. Metabolic pools differ among ecologically diverse Drosophila species. Matzkin LM; Mutsaka K; Johnson S; Markow TA J Insect Physiol; 2009 Dec; 55(12):1145-50. PubMed ID: 19698720 [TBL] [Abstract][Full Text] [Related]
20. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Jones CM; Stres B; Rosenquist M; Hallin S Mol Biol Evol; 2008 Sep; 25(9):1955-66. PubMed ID: 18614527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]