These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18546690)

  • 1. Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling.
    Jiang J; Kappler A
    Environ Sci Technol; 2008 May; 42(10):3563-9. PubMed ID: 18546690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances.
    Bauer I; Kappler A
    Environ Sci Technol; 2009 Jul; 43(13):4902-8. PubMed ID: 19673283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens.
    Wolf M; Kappler A; Jiang J; Meckenstock RU
    Environ Sci Technol; 2009 Aug; 43(15):5679-85. PubMed ID: 19731662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals.
    Piepenbrock A; Schröder C; Kappler A
    Environ Sci Technol; 2014; 48(3):1656-64. PubMed ID: 24400782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances.
    Dantas JM; Ferreira MR; Catarino T; Kokhan O; Pokkuluri PR; Salgueiro CA
    Biochim Biophys Acta Bioenerg; 2018 Aug; 1859(8):619-630. PubMed ID: 29777686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine by extracellular electron shuttling compounds.
    Kwon MJ; Finneran KT
    Appl Environ Microbiol; 2006 Sep; 72(9):5933-41. PubMed ID: 16957213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens.
    Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR
    Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between magnetite and humic substances: redox reactions and dissolution processes.
    Sundman A; Byrne JM; Bauer I; Menguy N; Kappler A
    Geochem Trans; 2017 Oct; 18(1):6. PubMed ID: 29086818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles.
    Maithreepala RA; Doong RA
    J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction.
    Lovley DR; Blunt-Harris EL
    Appl Environ Microbiol; 1999 Sep; 65(9):4252-4. PubMed ID: 10473447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox reaction between solid-phase humins and Fe(III) compounds: Toward a further understanding of the redox properties of humin and its possible environmental effects.
    Xiao Z; Yang L; Chen C; Chen D; Zhou X
    J Environ Manage; 2022 May; 310():114793. PubMed ID: 35220098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments: A review.
    Lee S; Roh Y; Koh DC
    Chemosphere; 2019 Apr; 220():86-97. PubMed ID: 30579952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of electron transfer reactions by humic substances: Implications for their biogeochemical roles and determination of their electron donating capacity.
    Bravo C; De Nobili M; Gambi A; Martin-Neto L; Nascimento OR; Toniolo R
    Chemosphere; 2022 Jan; 286(Pt 2):131755. PubMed ID: 34365173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Fe(III) on the bromate reduction by humic substances in aqueous solution.
    Xie L; Shang C; Zhou Q
    J Environ Sci (China); 2008; 20(3):257-61. PubMed ID: 18595389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction.
    Stern N; Mejia J; He S; Yang Y; Ginder-Vogel M; Roden EE
    Environ Sci Technol; 2018 May; 52(10):5691-5699. PubMed ID: 29658273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of biomass, electron shuttles, and ferrous iron in the kinetics of Geobacter sulfurreducens-mediated ferrihydrite reduction.
    MacDonald LH; Moon HS; Jaffé PR
    Water Res; 2011 Jan; 45(3):1049-62. PubMed ID: 21111440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
    Pédrot M; Le Boudec A; Davranche M; Dia A; Henin O
    J Colloid Interface Sci; 2011 Jul; 359(1):75-85. PubMed ID: 21482426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon and hydrogen isotope fractionation during anaerobic toluene oxidation by Geobacter metallireducens with different Fe(III) phases as terminal electron acceptors.
    Tobler NB; Hofstetter TB; Schwarzenbach RP
    Environ Sci Technol; 2008 Nov; 42(21):7786-92. PubMed ID: 19031861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.