These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 18547035)

  • 1. On the use of different potential energy functions in rare-gas cluster optimization by genetic algorithms: application to argon clusters.
    Marques JM; Pereira FB; Leitão T
    J Phys Chem A; 2008 Jul; 112(27):6079-89. PubMed ID: 18547035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A detailed investigation on the global minimum structures of mixed rare-gas clusters: geometry, energetics, and site occupancy.
    Marques JM; Pereira FB
    J Comput Chem; 2013 Mar; 34(6):505-17. PubMed ID: 23108580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clever and efficient method for searching optimal geometries of lennard-jones clusters.
    Takeuchi H
    J Chem Inf Model; 2006; 46(5):2066-70. PubMed ID: 16995737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unbiased population-based search for the geometry optimization of Lennard-Jones clusters: 2 < or = N < or = 372.
    Pullan W
    J Comput Chem; 2005 Jul; 26(9):899-906. PubMed ID: 15841476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global potential energy minima of C60(H2O)n clusters.
    Hernández-Rojas J; Bretón J; Gomez Llorente JM; Wales DJ
    J Phys Chem B; 2006 Jul; 110(27):13357-62. PubMed ID: 16821854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Funnel hopping: Searching the cluster potential energy surface over the funnels.
    Cheng L; Feng Y; Yang J; Yang J
    J Chem Phys; 2009 Jun; 130(21):214112. PubMed ID: 19508061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel method for geometry optimization of molecular clusters: application to benzene clusters.
    Takeuchi H
    J Chem Inf Model; 2007; 47(1):104-9. PubMed ID: 17238254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global minimum structures of morse clusters as a function of the range of the potential: 81Cheng L; Yang J
    J Phys Chem A; 2007 Jun; 111(24):5287-93. PubMed ID: 17521176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an efficient geometry optimization method for water clusters.
    Takeuchi H
    J Chem Inf Model; 2008 Nov; 48(11):2226-33. PubMed ID: 18975879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and energetic properties of Ni-Cu bimetallic clusters.
    Hristova E; Dong Y; Grigoryan VG; Springborg M
    J Phys Chem A; 2008 Aug; 112(34):7905-15. PubMed ID: 18680266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putative global minimum structures of Morse clusters as a function of the range of the potential: 161 < or = N < or = 240.
    Feng Y; Cheng L; Liu H
    J Phys Chem A; 2009 Dec; 113(49):13651-5. PubMed ID: 19908881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of different potentials on the structures and energies of clusters.
    Ma Z; Cai W; Shao X
    J Comput Chem; 2011 Nov; 32(14):3075-80. PubMed ID: 21793011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dynamic lattice searching method with constructed core for optimization of large Lennard-Jones clusters.
    Yang X; Cai W; Shao X
    J Comput Chem; 2007 Jun; 28(8):1427-33. PubMed ID: 17330880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Compressing liquid": an efficient global minima search strategy for clusters.
    Zhou RL; Zhao LY; Pan BC
    J Chem Phys; 2009 Jul; 131(3):034108. PubMed ID: 19624182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global minimum geometries of acetylene clusters (HCCH)n with n < or = 55 obtained by a heuristic method combined with geometrical perturbations.
    Takeuchi H
    J Comput Chem; 2010 Jun; 31(8):1699-706. PubMed ID: 20127745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The performance of minima hopping and evolutionary algorithms for cluster structure prediction.
    Schönborn SE; Goedecker S; Roy S; Oganov AR
    J Chem Phys; 2009 Apr; 130(14):144108. PubMed ID: 19368430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global optimization of binary Lennard-Jones clusters using three perturbation operators.
    Ye T; Xu R; Huang W
    J Chem Inf Model; 2011 Mar; 51(3):572-7. PubMed ID: 21332209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures, rugged energetic landscapes, and nanothermodynamics of Al(n) (2 Li ZH; Jasper AW; Truhlar DG
    J Am Chem Soc; 2007 Dec; 129(48):14899-910. PubMed ID: 17994736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic lattice searching method with interior operation for unbiased optimization of large Lennard-Jones clusters.
    Shao X; Yang X; Cai W
    J Comput Chem; 2008 Aug; 29(11):1772-9. PubMed ID: 18351615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fast annealing evolutionary algorithm for global optimization.
    Cai W; Shao X
    J Comput Chem; 2002 Mar; 23(4):427-35. PubMed ID: 11908078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.