BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 1854726)

  • 1. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis.
    Sun DP; Sauer U; Nicholson H; Matthews BW
    Biochemistry; 1991 Jul; 30(29):7142-53. PubMed ID: 1854726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme.
    Nicholson H; Anderson DE; Dao-pin S; Matthews BW
    Biochemistry; 1991 Oct; 30(41):9816-28. PubMed ID: 1911773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of salt bridges near the surface of a protein to the conformational stability.
    Takano K; Tsuchimori K; Yamagata Y; Yutani K
    Biochemistry; 2000 Oct; 39(40):12375-81. PubMed ID: 11015217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability.
    Dao-pin S; Söderlind E; Baase WA; Wozniak JA; Sauer U; Matthews BW
    J Mol Biol; 1991 Oct; 221(3):873-87. PubMed ID: 1942034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic contributions to T4 lysozyme stability: solvent-exposed charges versus semi-buried salt bridges.
    Dong F; Zhou HX
    Biophys J; 2002 Sep; 83(3):1341-7. PubMed ID: 12202359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent.
    Blaber M; Baase WA; Gassner N; Matthews BW
    J Mol Biol; 1995 Feb; 246(2):317-30. PubMed ID: 7869383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and genetic analysis of electrostatic and other interactions in bacteriophage T4 lysozyme.
    Dao-pin S; Nicholson H; Baase WA; Zhang XJ; Wozniak JA; Matthews BW
    Ciba Found Symp; 1991; 161():52-62. PubMed ID: 1814696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of binding interactions in the complex between the anti-lysozyme antibody HyHEL-63 and its antigen.
    Li Y; Urrutia M; Smith-Gill SJ; Mariuzza RA
    Biochemistry; 2003 Jan; 42(1):11-22. PubMed ID: 12515535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a stabilizing disulfide bridge mutant that closes the active-site cleft of T4 lysozyme.
    Jacobson RH; Matsumura M; Faber HR; Matthews BW
    Protein Sci; 1992 Jan; 1(1):46-57. PubMed ID: 1304882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and thermodynamic analysis of the packing of two alpha-helices in bacteriophage T4 lysozyme.
    Daopin S; Alber T; Baase WA; Wozniak JA; Matthews BW
    J Mol Biol; 1991 Sep; 221(2):647-67. PubMed ID: 1920439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme.
    Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW
    J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein structural plasticity exemplified by insertion and deletion mutants in T4 lysozyme.
    Vetter IR; Baase WA; Heinz DW; Xiong JP; Snow S; Matthews BW
    Protein Sci; 1996 Dec; 5(12):2399-415. PubMed ID: 8976549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala-->Ser and Val-->Thr substitutions in T4 lysozyme.
    Blaber M; Lindstrom JD; Gassner N; Xu J; Heinz DW; Matthews BW
    Biochemistry; 1993 Oct; 32(42):11363-73. PubMed ID: 8218201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of amino acid residues at turns in the conformational stability and folding of human lysozyme.
    Takano K; Yamagata Y; Yutani K
    Biochemistry; 2000 Jul; 39(29):8655-65. PubMed ID: 10913274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do salt bridges stabilize proteins? A continuum electrostatic analysis.
    Hendsch ZS; Tidor B
    Protein Sci; 1994 Feb; 3(2):211-26. PubMed ID: 8003958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-induced denaturation of proteins: a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4 lysozyme.
    Anderson DE; Becktel WJ; Dahlquist FW
    Biochemistry; 1990 Mar; 29(9):2403-8. PubMed ID: 2337607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength and co-operativity of contributions of surface salt bridges to protein stability.
    Horovitz A; Serrano L; Avron B; Bycroft M; Fersht AR
    J Mol Biol; 1990 Dec; 216(4):1031-44. PubMed ID: 2266554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of a salt bridge to the thermostability of DNA binding protein HU from Bacillus stearothermophilus determined by site-directed mutagenesis.
    Kawamura S; Tanaka I; Yamasaki N; Kimura M
    J Biochem; 1997 Mar; 121(3):448-55. PubMed ID: 9133613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.