BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 1854726)

  • 21. Destabilizing effect of proline substitutions in two helical regions of T4 lysozyme: leucine 66 to proline and leucine 91 to proline.
    Gray TM; Arnoys EJ; Blankespoor S; Born T; Jagar R; Everman R; Plowman D; Stair A; Zhang D
    Protein Sci; 1996 Apr; 5(4):742-51. PubMed ID: 8845764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enthalpic destabilization of a mutant human lysozyme lacking a disulfide bridge between cysteine-77 and cysteine-95.
    Kuroki R; Inaka K; Taniyama Y; Kidokoro S; Matsushima M; Kikuchi M; Yutani K
    Biochemistry; 1992 Sep; 31(35):8323-8. PubMed ID: 1525170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of binding interactions in an idiotope-antiidiotope protein-protein complex by double mutant cycles.
    Goldman ER; Dall'Acqua W; Braden BC; Mariuzza RA
    Biochemistry; 1997 Jan; 36(1):49-56. PubMed ID: 8993317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stabilization of proteins by enhancement of inter-residue hydrophobic contacts: lessons of T4 lysozyme and barnase.
    Golovanov AP; Vergoten G; Arseniev AS
    J Biomol Struct Dyn; 2000 Dec; 18(3):477-91. PubMed ID: 11149522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrate the redundancy of information in an amino acid sequence.
    Heinz DW; Baase WA; Matthews BW
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3751-5. PubMed ID: 1570293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles.
    Serrano L; Horovitz A; Avron B; Bycroft M; Fersht AR
    Biochemistry; 1990 Oct; 29(40):9343-52. PubMed ID: 2248951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structures of randomly generated mutants of T4 lysozyme show that protein stability can be enhanced by relaxation of strain and by improved hydrogen bonding via bound solvent.
    Pjura P; Matthews BW
    Protein Sci; 1993 Dec; 2(12):2226-32. PubMed ID: 8298466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The introduction of strain and its effects on the structure and stability of T4 lysozyme.
    Liu R; Baase WA; Matthews BW
    J Mol Biol; 2000 Jan; 295(1):127-45. PubMed ID: 10623513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in electrostatic properties at antibody-antigen binding sites: implications for specificity and cross-reactivity.
    Sinha N; Mohan S; Lipschultz CA; Smith-Gill SJ
    Biophys J; 2002 Dec; 83(6):2946-68. PubMed ID: 12496069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect.
    Xu J; Baase WA; Baldwin E; Matthews BW
    Protein Sci; 1998 Jan; 7(1):158-77. PubMed ID: 9514271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling protein stability: a theoretical analysis of the stability of T4 lysozyme mutants.
    Veenstra DL; Kollman PA
    Protein Eng; 1997 Jul; 10(7):789-807. PubMed ID: 9342145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of proline residues in human lysozyme stability: a scanning calorimetric study combined with X-ray structure analysis of proline mutants.
    Herning T; Yutani K; Inaka K; Kuroki R; Matsushima M; Kikuchi M
    Biochemistry; 1992 Aug; 31(31):7077-85. PubMed ID: 1643041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation analysis of the stability mutant R96H of T4 lysozyme.
    Tidor B; Karplus M
    Biochemistry; 1991 Apr; 30(13):3217-28. PubMed ID: 2009262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of surface salt bridges to protein stability: guidelines for protein engineering.
    Makhatadze GI; Loladze VV; Ermolenko DN; Chen X; Thomas ST
    J Mol Biol; 2003 Apr; 327(5):1135-48. PubMed ID: 12662936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interhelical ion pairing in coiled coils: solution structure of a heterodimeric leucine zipper and determination of pKa values of Glu side chains.
    Marti DN; Jelesarov I; Bosshard HR
    Biochemistry; 2000 Oct; 39(42):12804-18. PubMed ID: 11041845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme.
    Hurley JH; Baase WA; Matthews BW
    J Mol Biol; 1992 Apr; 224(4):1143-59. PubMed ID: 1569571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of surface salt bridges to protein stability.
    Strop P; Mayo SL
    Biochemistry; 2000 Feb; 39(6):1251-5. PubMed ID: 10684603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward a simplification of the protein folding problem: a stabilizing polyalanine alpha-helix engineered in T4 lysozyme.
    Zhang XJ; Baase WA; Matthews BW
    Biochemistry; 1991 Feb; 30(8):2012-7. PubMed ID: 1998663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.