These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 1854749)
21. Homologous kappa-neurotoxins exhibit residue-specific interactions with the alpha 3 subunit of the nicotinic acetylcholine receptor: a comparison of the structural requirements for kappa-bungarotoxin and kappa-flavitoxin binding. McLane KE; Weaver WR; Lei S; Chiappinelli VA; Conti-Tronconi BM Biochemistry; 1993 Jul; 32(27):6988-94. PubMed ID: 8334127 [TBL] [Abstract][Full Text] [Related]
22. Intrinsic fluorescence of binding-site fragments of the nicotinic acetylcholine receptor: perturbations produced upon binding alpha-bungarotoxin. Pearce SF; Hawrot E Biochemistry; 1990 Nov; 29(47):10649-59. PubMed ID: 2271674 [TBL] [Abstract][Full Text] [Related]
23. Demonstration and affinity labeling of a stereoselective binding site for a benzomorphan opiate on acetylcholine receptor-rich membranes from Torpedo electroplaque. Oswald RE; Pennow NN; McLaughlin JT Proc Natl Acad Sci U S A; 1985 Feb; 82(3):940-4. PubMed ID: 3856242 [TBL] [Abstract][Full Text] [Related]
24. Characterization of cembranoid interaction with the nicotinic acetylcholine receptor. Hann RM; Pagán OR; Gregory L; Jácome T; Rodríguez AD; Ferchmin PA; Lu R; Eterović VA J Pharmacol Exp Ther; 1998 Oct; 287(1):253-60. PubMed ID: 9765345 [TBL] [Abstract][Full Text] [Related]
25. Effects of mutations of Torpedo acetylcholine receptor alpha 1 subunit residues 184-200 on alpha-bungarotoxin binding in a recombinant fusion protein. Chaturvedi V; Donnelly-Roberts DL; Lentz TL Biochemistry; 1993 Sep; 32(37):9570-6. PubMed ID: 8373764 [TBL] [Abstract][Full Text] [Related]
26. 5-hydroxytryptamine interaction with the nicotinic acetylcholine receptor. Blanton MP; McCardy EA; Fryer JD; Liu M; Lukas RJ Eur J Pharmacol; 2000 Feb; 389(2-3):155-63. PubMed ID: 10688979 [TBL] [Abstract][Full Text] [Related]
27. Desensitization of the nicotinic acetylcholine receptor by diisopropylfluorophosphate. Eldefrawi ME; Schweizer G; Bakry NM; Valdes JJ J Biochem Toxicol; 1988; 3():21-32. PubMed ID: 3236333 [TBL] [Abstract][Full Text] [Related]
28. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants. Chiara DC; Xie Y; Cohen JB Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488 [TBL] [Abstract][Full Text] [Related]
29. A high-affinity site for acetylcholine occurs close to the alpha-gamma subunit interface of Torpedo nicotinic acetylcholine receptor. Dunn SM; Conti-Tronconi BM; Raftery MA Biochemistry; 1993 Aug; 32(33):8616-21. PubMed ID: 8357804 [TBL] [Abstract][Full Text] [Related]
30. The alpha-conotoxins GI and MI distinguish between the nicotinic acetylcholine receptor agonist sites while SI does not. Hann RM; Pagán OR; Eterović VA Biochemistry; 1994 Nov; 33(47):14058-63. PubMed ID: 7947815 [TBL] [Abstract][Full Text] [Related]
31. High affinity binding of alpha-bungarotoxin to the purified alpha-subunit and to its 27,000-dalton proteolytic peptide from Torpedo marmorata acetylcholine receptor. Requirement for sodium dodecyl sulfate. Tzartos SJ; Changeux JP EMBO J; 1983; 2(3):381-7. PubMed ID: 11894953 [TBL] [Abstract][Full Text] [Related]
32. [Fragments 183-198 and 125-145 of the alpha-subunits of the Torpedo californica nicotinic acetylcholinergic receptor binds alpha-bungarotoxin and neurotoxin II from Naja naja oxiana]. Klukas O; Peshenko IA; Rodionov IL; Teliakova OV; Utkin IuN; Tsetlin VI Bioorg Khim; 1995 Feb; 21(2):152-5. PubMed ID: 7748208 [TBL] [Abstract][Full Text] [Related]
33. The ligand binding domain of the nicotinic acetylcholine receptor. Immunological analysis. Kachalsky SG; Aladjem M; Barchan D; Fuchs S FEBS Lett; 1993 Mar; 318(3):264-8. PubMed ID: 8440381 [TBL] [Abstract][Full Text] [Related]
34. Three-dimensional solution structure of the complex of alpha-bungarotoxin with a library-derived peptide. Scherf T; Balass M; Fuchs S; Katchalski-Katzir E; Anglister J Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6059-64. PubMed ID: 9177168 [TBL] [Abstract][Full Text] [Related]
35. 5-Doxylstearate-induced displacement of phencyclidine from its low-affinity binding sites on the nicotinic acetylcholine receptor. Arias HR Arch Biochem Biophys; 1999 Nov; 371(1):89-97. PubMed ID: 10525293 [TBL] [Abstract][Full Text] [Related]
36. Identification of amino acids contributing to high and low affinity d-tubocurarine sites in the Torpedo nicotinic acetylcholine receptor. Chiara DC; Cohen JB J Biol Chem; 1997 Dec; 272(52):32940-50. PubMed ID: 9407073 [TBL] [Abstract][Full Text] [Related]
37. Amino acid residues forming the interface of a neuronal nicotinic acetylcholine receptor with kappa-bungarotoxin: a study using single residue substituted peptide analogs. McLane KE; Wu XD; Conti-Tronconi BM Biochem Biophys Res Commun; 1991 Apr; 176(1):11-7. PubMed ID: 2018515 [TBL] [Abstract][Full Text] [Related]
38. Interaction of d-tubocurarine analogs with the Torpedo nicotinic acetylcholine receptor. Methylation and stereoisomerization affect site-selective competitive binding and binding to the noncompetitive site. Pedersen SE; Papineni RV J Biol Chem; 1995 Dec; 270(52):31141-50. PubMed ID: 8537377 [TBL] [Abstract][Full Text] [Related]
39. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the delta subunit is labeled by [3H]chlorpromazine. Giraudat J; Dennis M; Heidmann T; Chang JY; Changeux JP Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2719-23. PubMed ID: 3085104 [TBL] [Abstract][Full Text] [Related]
40. Effects of substance P on the binding of agonists to the nicotinic acetylcholine receptor of Torpedo electroplaque. Min CK; Weiland GA J Neurochem; 1993 Jun; 60(6):2238-46. PubMed ID: 7684070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]