BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1854751)

  • 1. Mechanism of altered renal glutaminase gene expression in response to chronic acidosis.
    Hwang JJ; Perera S; Shapiro RA; Curthoys NP
    Biochemistry; 1991 Jul; 30(30):7522-6. PubMed ID: 1854751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the levels of translatable glutaminase mRNA during onset and recovery from metabolic acidosis.
    Tong J; Shapiro RA; Curthoys NP
    Biochemistry; 1987 May; 26(10):2773-7. PubMed ID: 3606991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of acute alterations in acid-base balance on rat renal glutaminase and phosphoenolpyruvate carboxykinase gene expression.
    Hwang JJ; Curthoys NP
    J Biol Chem; 1991 May; 266(15):9392-6. PubMed ID: 1709637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH and bicarbonate on phosphoenolpyruvate carboxykinase and glutaminase mRNA levels in cultured renal epithelial cells.
    Kaiser S; Curthoys NP
    J Biol Chem; 1991 May; 266(15):9397-402. PubMed ID: 1851745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of acidosis on phosphoenolpyruvate carboxykinase and glutaminase mRNAs in rat kidney and in LLC-PK-F+ cells.
    Kaiser S; Hwang JJ; Curthoys NP
    Contrib Nephrol; 1991; 92():206-10. PubMed ID: 1756643
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of increased renal gene expression during metabolic acidosis.
    Curthoys NP; Gstraunthaler G
    Am J Physiol Renal Physiol; 2001 Sep; 281(3):F381-90. PubMed ID: 11502586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in mRNAs for enzymes of glutamine metabolism in kidney and liver during ammonium chloride acidosis.
    Schoolwerth AC; deBoer PA; Moorman AF; Lamers WH
    Am J Physiol; 1994 Sep; 267(3 Pt 2):F400-6. PubMed ID: 7916534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of metabolic acidosis on the synthesis and turnover of rat renal phosphate-dependent glutaminase.
    Tong J; Harrison G; Curthoys NP
    Biochem J; 1986 Jan; 233(1):139-44. PubMed ID: 3954723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hormonal and acid-base regulation of phosphoenolpyruvate carboxykinase mRNA levels in rat kidney.
    Watford M; Mapes RE
    Arch Biochem Biophys; 1990 Nov; 282(2):399-403. PubMed ID: 2173484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time course of changes in mRNAs for enzymes of glutamine metabolism in kidney during metabolic acidosis.
    Schoolwerth AC; deBoer P; Moorman AF; Lamers WH
    Contrib Nephrol; 1994; 110():127-32. PubMed ID: 7956244
    [No Abstract]   [Full Text] [Related]  

  • 11. Glutamine metabolism in the kidney during induction of, and recovery from, metabolic acidosis in the rat.
    Parry DM; Brosnan JT
    Biochem J; 1978 Aug; 174(2):387-96. PubMed ID: 708390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression and acid-base regulation of glutaminase mRNAs in gluconeogenic LLC-PK(1)-FBPase(+) cells.
    Gstraunthaler G; Holcomb T; Feifel E; Liu W; Spitaler N; Curthoys NP
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F227-37. PubMed ID: 10662727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of renal glutaminase gene expression during metabolic acidosis.
    Shapiro RA; Banner C; Hwang JJ; Wenthold RJ; Curthoys NP
    Contrib Nephrol; 1988; 63():141-6. PubMed ID: 3191704
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of zeta-crystallin/NADPH:quinone reductase as a renal glutaminase mRNA pH response element-binding protein.
    Tang A; Curthoys NP
    J Biol Chem; 2001 Jun; 276(24):21375-80. PubMed ID: 11294877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chronic renal failure on the abundance of mRNA for enzymes of intermediary metabolism in kidney and liver.
    Choukroun G; Bankir L; Trinh-Trang-Tan MM
    Exp Nephrol; 1994; 2(6):358-63. PubMed ID: 7859037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal response to metabolic acidosis: role of mRNA stabilization.
    Ibrahim H; Lee YJ; Curthoys NP
    Kidney Int; 2008 Jan; 73(1):11-8. PubMed ID: 17914349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal metabolic response to acid base changes. I. Enzymatic control of ammoniagenesis in the rat.
    Alleyne GA; Scullard GH
    J Clin Invest; 1969 Feb; 48(2):364-70. PubMed ID: 4303457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired expression of key molecules of ammoniagenesis underlies renal acidosis in a rat model of chronic kidney disease.
    Bürki R; Mohebbi N; Bettoni C; Wang X; Serra AL; Wagner CA
    Nephrol Dial Transplant; 2015 May; 30(5):770-81. PubMed ID: 25523450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal metabolite concentrations and the activities of glutaminase and glutamate dehydrogenase during recovery from metabolic acidosis in the rat.
    Parry DM; Hall B; Brosnan JT
    Can J Biochem; 1981; 59(11-12):871-6. PubMed ID: 7332866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of mitochondrial glutaminase in rat renal glutamine metabolism.
    Curthoys NP
    J Nutr; 2001 Sep; 131(9 Suppl):2491S-5S; discussion 2496S-7S. PubMed ID: 11533299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.