BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18547565)

  • 1. Comparison of various staining methods for the detection of Cryptosporidium in cell-free culture.
    Boxell A; Hijjawi N; Monis P; Ryan U
    Exp Parasitol; 2008 Sep; 120(1):67-72. PubMed ID: 18547565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative tracking of Cryptosporidium infection in cell culture with CFSE.
    Feng H; Nie W; Bonilla R; Widmer G; Sheoran A; Tzipori S
    J Parasitol; 2006 Dec; 92(6):1350-4. PubMed ID: 17304819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete development of Cryptosporidium parvum in host cell-free culture.
    Hijjawi NS; Meloni BP; Ng'anzo M; Ryan UM; Olson ME; Cox PT; Monis PT; Thompson RC
    Int J Parasitol; 2004 Jun; 34(7):769-77. PubMed ID: 15157759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cytometric analysis of fluorescence in situ hybridization with dye dilution and DNA staining (flow-FISH-DDD) to determine telomere length dynamics in proliferating cells.
    Potter AJ; Wener MH
    Cytometry A; 2005 Nov; 68(1):53-8. PubMed ID: 16163702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryptosporidium parvum development in the BS-C-1 cell line.
    Deng MQ; Cliver DO
    J Parasitol; 1998 Feb; 84(1):8-15. PubMed ID: 9488330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete development and multiplication of Cryptosporidium hominis in cell-free culture.
    Hijjawi N; Estcourt A; Yang R; Monis P; Ryan U
    Vet Parasitol; 2010 Apr; 169(1-2):29-36. PubMed ID: 20092948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular targets for detection and immunotherapy in Cryptosporidium parvum.
    Boulter-Bitzer JI; Lee H; Trevors JT
    Biotechnol Adv; 2007; 25(1):13-44. PubMed ID: 17055210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel method for cell debris removal in the flow cytometric cell cycle analysis using carboxy-fluorescein diacetate succinimidyl ester.
    Terho P; Lassila O
    Cytometry A; 2006 Jun; 69(6):552-4. PubMed ID: 16646047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoclonal Antibodies to Intracellular Stages of Cryptosporidium parvum Define Life Cycle Progression
    Wilke G; Ravindran S; Funkhouser-Jones L; Barks J; Wang Q; VanDussen KL; Stappenbeck TS; Kuhlenschmidt TB; Kuhlenschmidt MS; Sibley LD
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29848759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptosporidium: new developments in cell culture.
    Hijjawi N
    Exp Parasitol; 2010 Jan; 124(1):54-60. PubMed ID: 19501089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptosporidium parvum: identification of a new surface adhesion protein on sporozoite and oocyst by screening of a phage-display cDNA library.
    Yao L; Yin J; Zhang X; Liu Q; Li J; Chen L; Zhao Y; Gong P; Liu C
    Exp Parasitol; 2007 Apr; 115(4):333-8. PubMed ID: 17097085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester.
    Quah BJ; Warren HS; Parish CR
    Nat Protoc; 2007; 2(9):2049-56. PubMed ID: 17853860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system.
    Borowski H; Thompson RC; Armstrong T; Clode PL
    Parasitology; 2010 Jan; 137(1):13-26. PubMed ID: 19691870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody.
    Taguchi T; Arakaki A; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T
    Biotechnol Bioeng; 2007 Feb; 96(2):272-80. PubMed ID: 16917954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct counting of Cryptosporidium parvum oocysts using fluorescence in situ hybridization on a membrane filter.
    Taguchi T; Shinozaki Y; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T
    J Microbiol Methods; 2006 Nov; 67(2):373-80. PubMed ID: 16793153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of a ribosomal RNA targeted oligonucleotide probe for fluorescent labelling of viable Cryptosporidium parvum oocysts.
    Vesey G; Ashbolt N; Fricker EJ; Deere D; Williams KL; Veal DA; Dorsch M
    J Appl Microbiol; 1998 Sep; 85(3):429-40. PubMed ID: 9750273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Dots as alternatives to organic fluorophores for Cryptosporidium detection using conventional flow cytometry and specific monoclonal antibodies: lessons learned.
    Ferrari BC; Bergquist PL
    Cytometry A; 2007 Apr; 71(4):265-71. PubMed ID: 17279568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeabilization method for in-situ investigation of fungal conidia on surfaces.
    Villa F; Cappitelli F; Principi P; Polo A; Sorlini C
    Lett Appl Microbiol; 2009 Feb; 48(2):234-40. PubMed ID: 19196441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular like-gregarine stages of Cryptosporidium parvum.
    Rosales MJ; Cordón GP; Moreno MS; Sánchez CM
    Acta Trop; 2005 Jul; 95(1):74-8. PubMed ID: 15907779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Cryptosporidium parvum oocyst viability by fluorescence in situ hybridization using a ribosomal RNA-directed probe.
    Smith JJ; Gunasekera TS; Barardi CR; Veal D; Vesey G
    J Appl Microbiol; 2004; 96(2):409-17. PubMed ID: 14723702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.