These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18547713)

  • 1. Stochasticity and functionality of neural systems: mathematical modelling of axon growth in the spinal cord of tadpole.
    Borisyuk R; Cooke T; Roberts A
    Biosystems; 2008; 93(1-2):101-14. PubMed ID: 18547713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network.
    Li WC; Cooke T; Sautois B; Soffe SR; Borisyuk R; Roberts A
    Neural Dev; 2007 Sep; 2():17. PubMed ID: 17845723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord.
    Davis O; Merrison-Hort R; Soffe SR; Borisyuk R
    Sci Rep; 2017 Oct; 7(1):13551. PubMed ID: 29051550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.
    Borisyuk R; Al Azad AK; Conte D; Roberts A; Soffe SR
    PLoS One; 2014; 9(2):e89461. PubMed ID: 24586794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling.
    Yoshida M; Roberts A; Soffe SR
    J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis.
    Gibbs KM; Chittur SV; Szaro BG
    Eur J Neurosci; 2011 Jan; 33(1):9-25. PubMed ID: 21059114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles.
    Li WC; Perrins R; Soffe SR; Yoshida M; Walford A; Roberts A
    J Comp Neurol; 2001 Dec; 441(3):248-65. PubMed ID: 11745648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the connectome of a simple spinal cord.
    Borisyuk R; Al Azad AK; Conte D; Roberts A; Soffe SR
    Front Neuroinform; 2011; 5():20. PubMed ID: 21977016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motoneurons of the axial swimming muscles in hatchling Xenopus tadpoles: features, distribution, and central synapses.
    Roberts A; Walford A; Soffe SR; Yoshida M
    J Comp Neurol; 1999 Aug; 411(3):472-86. PubMed ID: 10413780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal expression of phosphorylated and non-phosphorylated forms of neurofilament proteins in the developing nervous system of Xenopus laevis.
    Szaro BG; Lee VM; Gainer H
    Brain Res Dev Brain Res; 1989 Jul; 48(1):87-103. PubMed ID: 2502330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity.
    Hull MJ; Soffe SR; Willshaw DJ; Roberts A
    PLoS Comput Biol; 2015 May; 11(5):e1004240. PubMed ID: 25954930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study.
    Harper CE; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1993 Apr; 340(1291):141-60. PubMed ID: 8099742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of the dendritic organization of primary and secondary motoneurons in the spinal cord of Xenopus laevis. An HRP study.
    van Mier P; van Rheden R; ten Donkelaar HJ
    Anat Embryol (Berl); 1985; 172(3):311-24. PubMed ID: 4061871
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Borodinsky LN
    Front Neural Circuits; 2017; 11():90. PubMed ID: 29218002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A functional scaffold of CNS neurons for the vertebrates: the developing Xenopus laevis spinal cord.
    Roberts A; Li WC; Soffe SR
    Dev Neurobiol; 2012 Apr; 72(4):575-84. PubMed ID: 21485014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing descending neurons of the early Xenopus tail spinal cord in the caudal spinal cord of early Xenopus.
    Nordlander RH
    J Comp Neurol; 1984 Sep; 228(1):117-28. PubMed ID: 6480904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of serotonergic raphespinal projections in Xenopus laevis.
    van Mier P; Joosten HW; van Rheden R; ten Donkelaar HJ
    Int J Dev Neurosci; 1986; 4(5):465-75. PubMed ID: 3455605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs.
    Sánchez-Camacho C; Martín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2002 Apr; 446(1):11-24. PubMed ID: 11920716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.