BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 1854784)

  • 21. Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities.
    Gill DL; Chueh SH; Noel MW; Ueda T
    Biochim Biophys Acta; 1986 Mar; 856(1):165-73. PubMed ID: 3006769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Na+-Ca2+ exchange in bovine rod outer segments requires and transports K+.
    Schnetkamp PP; Basu DK; Szerencsei RT
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C153-7. PubMed ID: 2502022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinction between the two basic mechanisms of cation transport in the cardiac Na(+)-Ca2+ exchange system.
    Khananshvili D
    Biochemistry; 1990 Mar; 29(10):2437-42. PubMed ID: 2110471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rate of Na+/Ca2+ exchange across the plasma membrane of synaptosomes measured using the fluorescence of chlorotetracycline. Implications to calcium homeostasis in synaptic terminals.
    García-Martín E; Gutiérrez-Merino C
    Biochim Biophys Acta; 1996 Apr; 1280(2):257-64. PubMed ID: 8639702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 'Slow' K+-stimulated Ca2+ influx is mediated by Na+-Ca2+ exchange: a pharmacological study.
    Nachshen DA; Kongsamut S
    Biochim Biophys Acta; 1989 Mar; 979(3):305-10. PubMed ID: 2923885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid interaction of FRCRCFa with the cytosolic side of the cardiac sarcolemma Na(+)-Ca2+ exchanger blocks the ion transport without preventing the binding of either sodium or calcium.
    Khananshvili D; Baazov D; Weil-Maslansky E; Shaulov G; Mester B
    Biochemistry; 1996 Dec; 35(49):15933-40. PubMed ID: 8961960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Opiates inhibit acetylcholine release from Torpedo nerve terminals by blocking Ca2+ influx.
    Michaelson DM; McDowall G; Sarne Y
    J Neurochem; 1984 Sep; 43(3):614-8. PubMed ID: 6431053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Calcium transport in brain synaptosomes during depolarization. The role of potential-dependent channels and Na+/Ca2+ metabolism].
    Konev SV; Aksentsev SL; Okun' IM; Merezhinskaia NV; Rakovich AA; Orlov SN; Pokudin NI; Kravtsov GM; Khodorov BI
    Biokhimiia; 1989 Jul; 54(7):1150-62. PubMed ID: 2553133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Na+-Ca2+ exchange in sarcolemmal membrane vesicles of dog mesenteric artery.
    Matlib MA
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C323-30. PubMed ID: 3421315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of the Na+-Ca2+ antiport by its ionic environment: the effect of lithium.
    Hermoni M; Barzilai A; Rahamimoff H
    Isr J Med Sci; 1987; 23(1-2):44-8. PubMed ID: 2437073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversed mode Na(+)-Ca2+ exchange activated by ciguatoxin (CTX-1b) enhances acetylcholine release from Torpedo cholinergic synaptosomes.
    Gaudry-Talarmain YM; Molgo J; Meunier FA; Moulian N; Legrand AM
    Ann N Y Acad Sci; 1996 Apr; 779():404-6. PubMed ID: 8659856
    [No Abstract]   [Full Text] [Related]  

  • 32. Calcium uptake related to K+-depolarization and Na+/Ca2+ exchange in sheep brain synaptosomes.
    Coutinho OP; Carvalho CA; Carvalho AP
    Brain Res; 1984 Jan; 290(2):261-71. PubMed ID: 6692143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation energy of the cardiac Na+/Ca2+ exchanger in sarcolemmal vesicles and reconstituted proteoliposomes.
    Dalla Serra M; Pederzolli C; Antolini R; Cusinato F; Luciani S; Menestrina G
    Cardioscience; 1991 Sep; 2(3):193-7. PubMed ID: 1742469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ouabain induces acetylcholine release from pure cholinergic synaptosomes independently of extracellular calcium concentration.
    Blasi JM; Ceña V; González-García C; Marsal J; Solsona C
    Neurochem Res; 1988 Nov; 13(11):1035-41. PubMed ID: 3237303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid charge translocation by the cardiac Na(+)-Ca2+ exchanger after a Ca2+ concentration jump.
    Kappl M; Hartung K
    Biophys J; 1996 Nov; 71(5):2473-85. PubMed ID: 8913587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membranes of rat small intestine.
    Ghijsen WE; De Jong MD; Van Os CH
    Biochim Biophys Acta; 1983 Apr; 730(1):85-94. PubMed ID: 6403033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Affinity chromatography purification of mitochondrial inner membrane proteins with calcium transport activity.
    Villa A; García-Simón MI; Blanco P; Sesé B; Bogónez E; Satrustegui J
    Biochim Biophys Acta; 1998 Sep; 1373(2):347-59. PubMed ID: 9733995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rate-limiting mechanisms of exchange reactions in the cardiac sarcolemma Na(+)-Ca2+ exchanger.
    Khananshvili D; Shaulov G; Weil-Maslansky E
    Biochemistry; 1995 Aug; 34(32):10290-7. PubMed ID: 7640285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sodium and calcium share the electrogenic 2 Na(+)-1 H+ antiporter in crustacean antennal glands.
    Ahearn GA; Franco P
    Am J Physiol; 1990 Nov; 259(5 Pt 2):F758-67. PubMed ID: 2173419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for a Na+/Ca2+ exchanger in neuroblastoma x glioma hybrid NG108-15 cells.
    Hsu LS; Chou WY; Chueh SH
    Biochem J; 1995 Jul; 309 ( Pt 2)(Pt 2):445-52. PubMed ID: 7626008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.