BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1854786)

  • 1. A statistical mechanical analysis of the effect of long-chain alcohols and high pressure upon the phase transition temperature of lipid bilayer membranes.
    Suezaki Y; Tamura K; Takasaki M; Kamaya H; Ueda I
    Biochim Biophys Acta; 1991 Jul; 1066(2):225-8. PubMed ID: 1854786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High pressure antagonism of alcohol effects on the main phase-transition temperature of phospholipid membranes: biphasic response.
    Tamura K; Kaminoh Y; Kamaya H; Ueda I
    Biochim Biophys Acta; 1991 Jul; 1066(2):219-24. PubMed ID: 1854785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular origin of biphasic response of main phase-transition temperature of phospholipid membranes to long-chain alcohols.
    Suezaki Y; Kamaya H; Ueda I
    Biochim Biophys Acta; 1985 Aug; 818(1):31-7. PubMed ID: 3839417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-dependent nonlinear response of the main phase-transition temperature of phospholipid membranes to alcohols.
    Kamaya H; Ma SM; Lin SH
    J Membr Biol; 1986; 90(2):157-61. PubMed ID: 3755180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of short-chain alcohols on the phase behavior and interdigitation of phosphatidylcholine bilayer membranes.
    Löbbecke L; Cevc G
    Biochim Biophys Acta; 1995 Jul; 1237(1):59-69. PubMed ID: 7619843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of alcohols on the phase transition temperatures of mixed-chain phosphatidylcholines.
    Li S; Lin HN; Wang G; Huang C
    Biophys J; 1996 Jun; 70(6):2784-94. PubMed ID: 8744316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alcohol interaction with high entropy states of macromolecules: critical temperature hypothesis for anesthesia cutoff.
    Kaminoh Y; Nishimura S; Kamaya H; Ueda I
    Biochim Biophys Acta; 1992 May; 1106(2):335-43. PubMed ID: 1596513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of alcohol on the phase separation in model membranes.
    Ludwig J; Maibaum L
    Chem Phys Lipids; 2020 Nov; 233():104986. PubMed ID: 33080278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A solid-solution theory of anesthetic interaction with lipid membranes: temperature span of the main phase transition.
    Suezaki Y; Tatara T; Kaminoh Y; Kamaya H; Ueda I
    Biochim Biophys Acta; 1990 Nov; 1029(1):143-8. PubMed ID: 2223805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between anesthetics and lipid mixtures. Normal alcohols.
    Lee AG
    Biochemistry; 1976 Jun; 15(11):2448-54. PubMed ID: 1276154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers.
    Ly HV; Longo ML
    Biophys J; 2004 Aug; 87(2):1013-33. PubMed ID: 15298907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solute effects on the colloidal and phase behavior of lipid bilayer membranes: ethanol-dipalmitoylphosphatidylcholine mixtures.
    Vierl U; Löbbecke L; Nagel N; Cevc G
    Biophys J; 1994 Sep; 67(3):1067-79. PubMed ID: 7811917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating induced interdigitation in membranes.
    Kranenburg M; Vlaar M; Smit B
    Biophys J; 2004 Sep; 87(3):1596-605. PubMed ID: 15345539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alcohol effects on rapid kinetics of water transport through lipid membranes and location of the main barrier.
    Inoue T; Kamaya H; Ueda I
    Biochim Biophys Acta; 1985 Apr; 815(1):68-74. PubMed ID: 3986204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alcohol's effects on lipid bilayer properties.
    Ingólfsson HI; Andersen OS
    Biophys J; 2011 Aug; 101(4):847-55. PubMed ID: 21843475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermotropic and barotropic phase transitions of N-methylated dipalmitoylphosphatidylethanolamine bilayers.
    Kusube M; Matsuki H; Kaneshina S
    Biochim Biophys Acta; 2005 Feb; 1668(1):25-32. PubMed ID: 15670728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alcohols reduce lateral membrane pressures: predictions from molecular theory.
    Frischknecht AL; Frink LJ
    Biophys J; 2006 Dec; 91(11):4081-90. PubMed ID: 16980354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia.
    Franks NP; Lieb WR
    Proc Natl Acad Sci U S A; 1986 Jul; 83(14):5116-20. PubMed ID: 3460084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.