These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 18547916)

  • 1. An analytical model for light ion pencil beam dose distributions: multiple scattering of primary and secondary ions.
    Hollmark M; Gudowska I; Belkić Dz; Brahme A; Sobolevsky N
    Phys Med Biol; 2008 Jul; 53(13):3477-91. PubMed ID: 18547916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical theory for the fluence, planar fluence, energy fluence, planar energy fluence and absorbed dose of primary particles and their fragments in broad therapeutic light ion beams.
    Kempe J; Brahme A
    Phys Med; 2010 Jan; 26(1):6-16. PubMed ID: 19345598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A beam source model for scanned proton beams.
    Kimstrand P; Traneus E; Ahnesjö A; Grusell E; Glimelius B; Tilly N
    Phys Med Biol; 2007 Jun; 52(11):3151-68. PubMed ID: 17505095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Very high-energy electron dose calculation using the Fermi-Eyges theory of multiple scattering and a simplified pencil beam model.
    Ronga MG; Deut U; Bonfrate A; De Marzi L
    Med Phys; 2023 Dec; 50(12):8009-8022. PubMed ID: 37730956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections.
    Wiklund K; Olivera GH; Brahme A; Lind BK
    Radiat Res; 2008 Jul; 170(1):83-92. PubMed ID: 18582149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy.
    Kundrát P
    Phys Med Biol; 2007 Dec; 52(23):6813-30. PubMed ID: 18029977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of multiple scattering and energy loss straggling on the absorbed dose distributions of therapeutic light ion beams: I. Analytical pencil beam model.
    Hollmark M; Uhrdin J; Dz B; Gudowska I; Brahme A
    Phys Med Biol; 2004 Jul; 49(14):3247-65. PubMed ID: 15357195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations.
    Soukup M; Fippel M; Alber M
    Phys Med Biol; 2005 Nov; 50(21):5089-104. PubMed ID: 16237243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low and high LET dose components in carbon beam.
    Gudowska I; Kempe J; Sobolevsky N
    Radiat Prot Dosimetry; 2006; 122(1-4):483-4. PubMed ID: 17151009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulations of a nozzle for the treatment of ocular tumours with high-energy proton beams.
    Newhauser W; Koch N; Hummel S; Ziegler M; Titt U
    Phys Med Biol; 2005 Nov; 50(22):5229-49. PubMed ID: 16264250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A particle track-repeating algorithm for proton beam dose calculation.
    Li JS; Shahine B; Fourkal E; Ma CM
    Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametrization and application of scatter kernels for modelling scanned proton beam collimator scatter dose.
    Kimstrand P; Traneus E; Ahnesjö A; Tilly N
    Phys Med Biol; 2008 Jul; 53(13):3405-29. PubMed ID: 18547915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit.
    Pshenichnov I; Mishustin I; Greiner W
    Phys Med Biol; 2005 Dec; 50(23):5493-507. PubMed ID: 16306647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm.
    Newhauser W; Fontenot J; Zheng Y; Polf J; Titt U; Koch N; Zhang X; Mohan R
    Phys Med Biol; 2007 Aug; 52(15):4569-84. PubMed ID: 17634651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electron fields in clinical application. A comparison of pencil beam and Monte Carlo algorithm].
    Treutwein M; Bogner L
    Strahlenther Onkol; 2007 Aug; 183(8):454-8. PubMed ID: 17680226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monochromatic beam characterization for Auger electron dosimetry and radiotherapy.
    Dugas JP; Oves SD; Sajo E; Matthews KL; Ham K; Hogstrom KR
    Eur J Radiol; 2008 Dec; 68(3 Suppl):S137-41. PubMed ID: 18599232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PET monitoring of cancer therapy with 3He and 12C beams: a study with the GEANT4 toolkit.
    Pshenichnov I; Larionov A; Mishustin I; Greiner W
    Phys Med Biol; 2007 Dec; 52(24):7295-312. PubMed ID: 18065840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo dose calculations for spot scanned proton therapy.
    Tourovsky A; Lomax AJ; Schneider U; Pedroni E
    Phys Med Biol; 2005 Mar; 50(5):971-81. PubMed ID: 15798269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy.
    Paganetti H; Jiang H; Parodi K; Slopsema R; Engelsman M
    Phys Med Biol; 2008 Sep; 53(17):4825-53. PubMed ID: 18701772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.